
The Wasserstein Loss Function

Prafulla Dhariwal
prafulla@mit.edu

MIT

Jeevana Inala
jinala@mit.edu

MIT

1. Introduction
In many learning scenarios, the target variable space has a
natural metric associated with it that captures the notion of
semantic similarity between different target values. We can
utilise this metric to define better loss functions that can in-
corporate the information from this metric into the learning
algorithm. One such loss function is the Wasserstein Loss
function, which provides a notion of the distance between
two measures on a target label space with a particular met-
ric. The Wasserstein distance between two measures is de-
fined as the amount of “mass” that has to move times the
distance by which it needs to move to make the two mea-
sures the same. The inspiration for our project was the recent
NIPS paper (Frogner et al. 2015), which proposes to use the
Wasserstein Loss function in a supervised learning setting,
specifically, for a multi-class multi-label learning problem.
In this project, we would like to explore the properties of
this loss function by comparing its accuracy, convergence
rates etc. against other loss functions, and by evaluating how
changes in parameters and the distance metric impact its per-
formance. We also try to reproduce some of the results de-
scribed in (Frogner et al. 2015).

Before we go into the details, we provide a brief summary
of our project work:

1. We implemented the Wasserstein loss function as a loss
layer in Caffe (Jia et al. 2014).1 (Previously, the only
open source implementation of the loss function was in
Mocha.jl, which we used as a reference)

2. We tested our implementation and benchmarked it for
some simple data sets.

3. We used our implementation to replicate the results in
(Frogner et al. 2015). Specifically, we re-implement their
experiments in Caffe with a toy dataset as well as with
the famous MNIST dataset (Lecun and Cortes)

4. We explored how changes in the distance metric and
use of relaxed versions of the loss function affect the
convergence and the performance.

As an extra, we have implemented our loss function in a way
that will allow it to be later merged with the Caffe library,

1 Our implementation is available here: https://github.com/

prafullasd/caffe-cpu

thus allowing others to explore the use of the Wasserstein
loss function with any model in the Caffe model zoo.

Note that because we implement this in Caffe, we con-
fined ourselves to work within the limits of the Caffe frame-
work, which is essentially a framework for Convolution
Neural Networks. We had also planned on evaluating the
effect of using the Wasserstein layer in a multi-label setting
like the Places2 data set, however, due to the lack of time
and computation resources, we weren’t able to do so. We,
however, do give a sketch of what we would have done in
section 6

2. The Wasserstein Loss function
In this section, we describe in brief the theory of the Wasser-
stein loss function, as well as its convex relaxation that has
an efficient algorithm for computing the loss and the gra-
dient. This is a brief summary of the work in (Frogner et al.
2015). For more details of related work and proofs of results,
refer to (Frogner et al. 2015). We also talk about the KL di-
vergence and the Multinomial Logistic Loss function, which
are similar loss functions that will be used for comparison in
this project.

2.1 Definition and Convex Relaxation
The learning problem we study is to learn a map from an
input set X ⊂ Rd to a space Y = R+

K of measures over a
set κ of K target classes. The target classes have a ground
metric dκ associated with them, which indicates the seman-
tic similarity between two target classes. Let M ∈ R+

κ×κ

be the distance matrix on the K target labels associated with
this metric i.e. Mk,k′ = dκ(k, k′) for k, k′ ∈ κ. Let hθ(·|x)
represent a hypothesis in our space of hypothesisH . Given a
vector of prediction probabilities hθ(·|x) and a ground truth
target measure y(x) ∈ R+

K , the Wasserstein’s loss between
them is then defined by (Definition 3.1 in (Frogner et al.
2015))

W (hθ(·|x), y(x)) = inf
T∈Π(h(x),y)

〈T,M〉

where Π(h(x), y(x)) is the set of valid transport plans given
by

Π(h(x), y) = {T ∈ R+
κ×κ|T1 = h(x), TT1 = y(x)}

https://github.com/prafullasd/caffe-cpu
https://github.com/prafullasd/caffe-cpu

One can understand this my noting that the matrix T rep-
resents possible ways of transporting the mass in the mea-
sure h(x) to the measure y(x), and we take its dot product
with the distance matrix M to penalize transportation over
longer distances.

For solving the learning problem, we need to minimise
the above loss function W , however, as noted in (Frogner
et al. 2015), calculating the exact subgradient is computa-
tionally expensive. Hence, the authors suggest smoothened
version of the loss function that is strictly convex. It is de-
fined as

λW (hθ(·|x), y(x)) = inf
T∈Π(h(x),y)

〈T,M〉+ λH(T) (1)

where H(T) = −
∑
k,k′ Tk,k′ log Tk,k′ . Here, the regular-

izer H(T) uses the entropy of the transportation matrix as
a measure of its complexity, thus regularizing the Hypoth-
esis set by favouring simpler hypotheses. Efficient iterative
algorithms exist for finding the transportation matrix T ∗ that
minimises (1), as well as for finding the gradient of (1)
(Frogner et al. 2015). The algorithm we used for our im-
plementation is outlined in the Section 3

2.2 Other similar loss functions
Throughout the paper, we will be using the KL divergence as
the standard multi-label multi-class loss function to compare
against. It is defined as the divergence

D(t||p) = −
∑
i

ti log(pi)

between the target distribution t and the predicted distribu-
tion p. For single-label problems, this is equivalent to the
Multinomial Logistic Loss which is given by l = −t log(pt),
where t is the target class label, and pt is the predicted prob-
ability for the target class t. Note that all of these loss func-
tions would need to take in a probability distribution p as
input, so usually one would apply the Softmax function to
map predictions to a probability distribution before applying
these loss functions.

3. Implementation in Caffe
We implemented the Wasserstein loss as a separate loss layer
in Caffe. This loss layer takes the distance matrix, M as an
input in addition to the other parameters such as λ and the
number of Sinkhorn iterations, sinkhorn iter. As in any
loss layer, there are two important functions in this layer:
Forward(...) and Backward(...) that correspond to the
loss computation during forward propagation and the gra-
dient computation during backward propagation. Since, it
is efficient to compute the gradients along with the loss,
we precompute the gradients during the Forward phase
and use them later in the Backward phase. The inputs
to each of these functions are the predicted labels, pred
and the expected ground truth, exp. Let n be the number

of data points and k be the number of labels. Here is the
algorithm that we used to compute the loss and the gra-
dient (Frogner et al. 2015) (Here . is used for element-
wise operations, thus .* is element-wise multiplication etc.).

Data: M, pred, exp
Result: loss,grad
K = e−λM ;
KM = K .* M;
u = ones(n, k) ./ k ; // Uniform distribution

for 1:sinkhorn iter do
u = pred ./ ((exp ./ (u * K)) * K);

end
v = exp ./ (u * K);
loss = sum(u .* (v * KM)) / n;
alpha = log(u) / (λ * n); // Gradient calculation

Algorithm 1: Wasserstein loss and gradient calculation

3.1 Testing Caffe implementation
We tested our implementation using the Gradient tester in
Caffe. It performs multiple forward passes for the layer,
computes the objective values, and then uses those to com-
pute the gradient numerically using finite-differences. We
note that the algorithm in 1 computes the gradient only up to
a constant shifting factor, and thus, to check our implemen-
tation, we have to subtract our gradient from the numerical
gradient and check if it is c1n (up to some threshold) for
some constant c ∈ R. The gradient test was successful.

3.2 End to end test: Toy dataset 1
In addition to the above check, we also performed an end-
to-end test on a small data set (this is the same as the
end-to-end test in the Mocha.jl implementation). It helps
to check for any run-time issues in real time, the conver-
gence rates as well as the speed of computation of our layer.
For our data set, we generate 100 uniformly random points
in [0, 1]4. We then set the target label of each data point
x = (x1, x2, x3, x4) as

y(x) = arg max
i

(xi)

. The model used in Caffe consists of three inner product
layers with a ReLU as the activation function. The output
of the final layer is passed to a softmax layer to obtain
probabilities for the 4 classes. We then use the Wasserstein
loss layer to check if it can learn accurately for this model,
and also compare its performance against the Multinomial
Logistic Loss Layer (KL divergence). The results obtained
are shown in Figure 1.

Figure 1: Performance of the multinomial logistic loss layer
i.e. KL divergence vs Wasserstein loss layer in Caffe. The
data set is toy dataset 1, and the Wasserstein loss layer has
Sinkhorn iterations = 50.

The Wasserstein loss is able to achieve the same accu-
racy (1) as the KL divergence after allowing both of them
to converge. The accuracy rate with respect to the number
of iterations indicates convergence rate, and the Wasserstein
layer is only about a factor of 2 slower. The accuracy rate
w.r.t time indicates the speed of computation of our imple-
mentation. Here, we note that even though Wasserstein loss
layer involves computing 50 iterations of the Sinkhorn algo-
rithm, it is still only about a factor of 3 slower in real time.

4. Exploring properties of the Wasserstein
loss function

We now replicate some of the results shown in (Frogner et al.
2015). While doing these experiments, we learned a lot more
about the properties of the Wasserstein loss function, as well
as about its implementation. Some of the new results we
obtained such as the effect of scaling the ground metric and

replacing the relaxed version by using λ = 0 version are also
mentioned.

Figure 2: Accuracy vs iterations on the MNIST dataset for
different scaling of the distance matrix, shown for p-norms
1 and 2. The convergence is much faster after we scale the
distance matrix by a factor of 10, and this held true over
multiple runs and also on changing the value of p. The plots
were obtained using the LeNet model with a Wasserstein
Loss layer having λ = 0.1 and sinkhorn iterations = 50

4.1 MNIST
In this section, we use the Wasserstein loss function on the
MNIST handwritten digits data set. This is a multi-class
learning problem with K = 10 target classes, and we can
define an artificial metric on the target space by setting
dp(i, j) = |i − j|p. Just like in (Frogner et al. 2015), we
show that the use of the Wasserstein loss function with this
metric imposes a smoothness on the predictions that makes
the predictions be numerically close to the actual value.

We use the LeNet convolution neural network (LeCun
et al. 1998) in the Caffe Model zoo and replace the top soft-
max loss layer with the Wasserstein loss layer. Our training
set consists of 60,000 examples, and the test set consists of

10,000 examples. To evaluate the effect of the change in loss
layers, we run both models (LeNet and LeNet-Wasserstein)
in Caffe for 10,000 training iterations, with the same hyper-
parameters in the common part of the model. For the Wasser-
stein loss layer itself, we used λ = 0.1 and p = 1. We noted
that increasing the Sinkhorn iterations from 10 to 50 im-
proved the accuracy of our Wasserstein layer considerably.
With these settings, we obtained that the accuracies of both
methods were almost identical (98%) when we allowed them
to converge.

We then experiment with the LeNet-Wasserstein model
only by changing the metric i.e. the value of p. Notice that
for p = 0, the metric reduces to the 0− 1 loss as each incor-
rect label is penalised equally, while, as p→∞, the loss as-
sociated with the neighbouring labels converges to a uniform
distribution. For numerical stability, we normalise our met-
ric so that all distance values lie in [0, 10). We initially chose
the upper bound as 1 as in (Frogner et al. 2015), however,
we noticed that scaling the distance values by a factor of 10
improves convergence rates, and given the limited compu-
tation resources we had this was really helpful. A graph of
the convergence rates for the Wasserstein loss layer for the
two scaling factors is shown in Figure 2. We could not scale
beyond 10 due to numerical limits on the loss value.

Now, for each p, we train the LeNet-Wasserstein model
for 10,000 iterations, and evaluate the mean probability of
the predictions associated with each target label. The plots
for the target labels 0, 5, and 9 are shown in Figure 3. As we
can see, for small p, the probability is concentrated on the
correct target label, while as p increases, the probabilities
tend to a uniform distribution as expected. Note also that the
probabilities are maximum for the target value, and decrease
as we go to more dissimilar neighbours according to the
distance metric used. Also note that even though the 9 and 0
would have different input image features, they seem to have
the same nature for the plot, thus giving further evidence that
the nature of the plot stems from the distance metric (which
is symmetric between 0 and 9) and not from the specific
nature of the input digits.

Figure 3: Mean prediction probabilities for target labels 0, 5,
and 9 vs p-norm. The plots were obtained using the LeNet
model with a Wasserstein Loss layer having λ = 0.1 and
sinkhorn iterations = 50

In (Frogner et al. 2015), the authors obtain the same
results. They, however, use a specialised simplification of the
Wasserstein loss function which applies to the case of single-

label multi-class problems (Appendix C in (Frogner et al.
2015)). We briefly talk about their implementation here, as it
provides more insight into the behaviour of the Wasserstein
loss function for the single-label multi-class case. In this
case, each target vector here is a vector ek with 0 at all but the
k-th place, where k ∈ {0, 1, ..., 9} = κ. Thus, the constraint
TT1 = ek forces all but the k-th column of T to be 0, while
the constraint T1 = hθ̂(·|x) forces the k-th column to be
hθ̂(·|x). Thus, there is only 1 valid transport plan T , and the
unrelaxed loss function (ie for λ = 0) can be directly written
as

W p
p (hθ̂(·|x), ek) =

∑
k′∈κ

dpκ(k′, k)hθ̂(k
′|x)

. Their implementation approximates this by the Softlabel
Softmax layer in Mocha.jl, which is essentially the KL di-
vergence D(l||p) of the softlabels l and the predictions p =
hθ̂(·|x). Specifically, for the MNIST dataset, if a data point x
had hard-label y = k, they set its softlabels to be a 10 dimen-
sional vector given by lk′ = s(k′, k), where s is a similarity
metric derived from the distance metric d. Thus, s ∝ −d,
which means that the KL divergence can be written as

D(l||p) ∝
∑
k′∈K

d(k′, k) log(hθ̂(k
′|x))

which is the same as W p
p except for the presence of the log

factor. This formulation was favoured for numerical stabil-
ity and easy of calculation of the KL gradient. Because the
log function is monotonic, for predictions that are away from
uniform they are almost equivalent. This is also supported by
the fact that the results of our experiment using the Wasser-
stein layer were very similar to the results the authors in
(Frogner et al. 2015) obtained using the approximate version
(Our plots can be compared to Figure 4 and 9 in (Frogner
et al. 2015)).

4.2 Noisy labels
In this section, we measure the performance of Wasserstein
loss on a training data with noisy labels. For the classifica-
tion problems where different categories are nearly indistin-
guishable, it is likely that the training data labels are noisy.
Since Wasserstein loss encourages predictions that are close
to the ground truth, it is expected that even in the presence
of noisy training labels, the predictions on the test data set
should not deviate much from the true labels. In order to ver-
ify this hypothesis, we simulate a toy data set whose labels
are points on a 2D grid. Here, we use the Euclidean distance
between any two labels as the natural metric. For each point
of the grid, we generate data from a Gaussian distribution
centered on that point and having a standard deviation of
0.2. Then, based on the noise level t, we randomly choose
t ∗ (# of training samples) data points from the training set
and flip their labels to one of their neighboring points on the
grid (uniformly choosen). For instance, Figure 4 shows the
training data set for a 3 × 3 grid with t = 0.1 and t = 0.5 re-

spectively. The testing data set is also generated in the above
manner except that their labels are not flipped.

Figure 4: Training data set for a 3× 3 grid with noise level =
0.1 and noise level = 0.5

Here, we experiment with different t values from 0.1 to
0.9 and different d× d grids where d ranges from 3 to 7. We
run each of these configurations 10 times. Our training and
test data sets have 2000 and 200 data points respectively.

We use a neural network with two hidden layers with
each layer having 64 nodes. The input layer has two features
corresponding to the x and y-coordinates of the point and the
output layer has d×d nodes. We construct two networks with
one of them using a soft-max loss layer (KL divergence)
and the other using our Wasserstein loss layer. We compare
the performance of these two loss layers by measuring the
average Euclidean distance between the predicted values and
the true labels over all the test data points.

For the Wasserstein loss layer, we found that λ = 0.1
and number of Sinkhorn iterations = 50 give the best results
and hence, we used those values for all the experiments. To
prevent the Wasserstein loss from diverging, we use a base
learning rate of 0.001 for the SGD algorithm. Also, because

of our limiting computing resources, we use only 10,000
SGD iterations as opposed to 100,000 iterations mentioned
in the original paper.

The results of our experiments can be found in Figure 5
and Figure 6. Our results do not quite match the results in
(Frogner et al. 2015) (Figure 2). We found that Wasserstein
loss beats KL divergence loss only for small d and higher
noise levels. For the other values, both the losses perform al-
most equally. We made the following observations that may
help explain this discrepancy:

1. When the noise level is too small, both Wasserstein and
KL divergence losses are achieving a very high accuracy
(about 97 ∼ 99%). Hence, only a tiny fraction of the test
data points are misclassified. Even with KL divergence,
these misclassified data points are likely to be classified
into any one of the adjacent classes. Hence, there is not
much difference between the loss functions.

2. When the noise level is too high, there are two competing
factors that seems to cancel each other. First of all, be-
cause the training data is too noisy, Wasserstein loss will
make predictions that are closer to the ground truth com-
pared to KL divergence loss. However, we found that
the Wasserstein loss version achieves smaller accuracy
than KL divergence loss. We believe that this might be
because of the numerical instability and approximation
errors that are inherent in the Wasserstein loss compu-
tation. Had we used the specialized simplification (as
mentioned in Appendix c of (Frogner et al. 2015)) that
uses a soft-label soft-max loss, we would have overcome
these issues and would probably have got better results.

3. Finally, for large values of d, we found that the Wasser-
stein loss implementation takes longer to converge. In
this respect, we found that normalizing and scaling the
distance matrix helped to some extent (similar to what
we saw in Section 4.1). However, we were not able to
find a scaling factor that works best for all grid sizes –
a small scaling factor worsens the convergence rate for
larger grids and a large scaling factor makes the loss di-
verge for smaller grids. On the other hand, increasing the
number of SGD iterations would have helped but we did
not have enough computational resources to perform that
experiment.

5. Work Division
We both divided the work more or less equally. Both of
us worked on implementing the Wasserstein loss layer in
Caffe and testing the implementation. Prafulla worked on
analysis the MNIST data set and Jeevana worked on analysis
of noisy labels data set. We made all the decisions together
and both us understand all of the material presented here. A

3 4 5 6 7
Size of the grid

0.0

0.1

0.2

0.3

0.4

0.5

A
v
g
 E

u
cl

id
e
a
n
 m

e
tr

ic

Wasserstein
KL Divergence

Figure 5: Effect of the size of the grid on the performance of
Wasserstein loss layer and Multinominal logistic loss layer
(KL-divergence).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Noise level

0.0

0.2

0.4

0.6

0.8

1.0
A

v
g
 E

u
cl

id
e
a
n
 m

e
tr

ic

Wasserstein
KL Divergence

Figure 6: Effect of the noise level on the performance of
Wasserstein loss layer and Multinominal logistic loss layer
(KL-divergence).

majority of time during the first half of project was spent on
implementing the loss layer in Caffe, as we were both new to
Caffe. During the second half, we spent a lot of time trying
to improve the performance of the Wasserstein layer, and it
taught us a lot about the different parameters involved.

6. Future Work
An important experiment we would like to perform if we
get time is to evaluate the use of the Wasserstein Loss layer
when used for the multi-label multi-class problem of recog-
nising tags associated with scenes. An important data set in
this setting is the Places2 (Zhou et al. 2015) data set, which
consists of 10 million images in 400+ scene categories. We
wanted to work on a small subset of the data set and see

whether imposing a metric on the semantic similarity of two
types of places helps the learning algorithm better predict
the top 5 labels associated with a place. An initial approach
at defining the metric would have been to use the word2vec
library to find the cosine distance between word tags in the
projected space. A similar experiment could be done with
the Flikr style data set (Karayev et al. 2013). For both of
these, pre-trained model’s are available in the caffe-model
zoo. Thus, by initialising the weight’s of the network using
these models, and only changing the top most loss layer to be
the Wasserstein loss layer, we can save a lot of computation
resources. The above highlights a key feature of our work -
because we implemented this as a layer in Caffe, users can
use this with any model in the Caffe Model zoo, allowing
other people to also explore the properties of this loss func-
tion.

7. Conclusion
In this paper, we describe our experiences in implement-
ing the Wasserstein loss layer and using it to perform su-
pervised learning for multi-class classification problems. We
performed our own implementation of the loss function, and
this allowed us to understand key properties of it like its de-
pendence on changing λ, sinkhorn iterations etc. We tested
it and benchmarked its performance on some toy data sets,
noting its convergence rates and accuracies in comparison to
other loss functions. To replicate the results from (Frogner
et al. 2015), we studied its performance on the MNIST data
set, where the changing p norm provided a lot of insight on
the properties of the loss function. We also studied its per-
formance on the noisy label data set, where we showed that
it provides robustness to noisy input label’s by utilising the
distance metric in the label space. Our results thus support
the hypothesis that the Wasserstein loss helps the learning
model when the labels space has a natural metric associated
with it.

8. Acknowledgements
We would like to thank Chiyuan Zhang and Charlie Frogner
(two of the authors in (Frogner et al. 2015)) for their guid-
ance in the project. They recommended performing an im-
plementation in Caffe as that would be most useful to the
community, and provided us help whenever we had a ques-
tion about the work in their paper.

References
C. Frogner, C. Zhang, H. Mobahi, M. Araya-Polo, and T. A. Pog-

gio. Learning with a wasserstein loss. In Advances in neural
information processing systems, 2015.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture
for fast feature embedding. arXiv preprint arXiv:1408.5093,
2014.

S. Karayev, M. Trentacoste, H. Han, A. Agarwala, T. Darrell,
A. Hertzmann, and H. Winnemoeller. Recognizing image style.
arXiv preprint arXiv:1311.3715, 2013.

Y. Lecun and C. Cortes. The MNIST database of handwritten
digits. URL http://yann.lecun.com/exdb/mnist/.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of the
IEEE, 86(11):2278–2324, 1998.

B. Zhou, A. Khosla, A. Lapedriza, A. Torralba, and A. Oliva.
Places2: A large-scale database for scene understanding, 2015.
URL http://places2.csail.mit.edu.

http://yann.lecun.com/exdb/mnist/
http://places2.csail.mit.edu

	Introduction
	The Wasserstein Loss function
	Definition and Convex Relaxation
	Other similar loss functions

	Implementation in Caffe
	Testing Caffe implementation
	End to end test: Toy dataset 1

	Exploring properties of the Wasserstein loss function
	MNIST
	Noisy labels

	Work Division
	Future Work
	Conclusion
	Acknowledgements

