
Task-Based Design of Ad-hoc Modular Manipulators

Thais Campos1∗, Jeevana Priya Inala2∗, Armando Solar-Lezama2, and Hadas Kress-Gazit1

Abstract— The great promise of modular robots is the ability
to create on demand robots; however, choosing the “right”
design based on a task is still a challenging problem. In this
paper, we present an approach to automatically synthesize
both the design and control for modular robots from a task
description. In particular, we focus on manipulators composed
of one degree-of-freedom (DoF) modules. Our approach is able
to handle partially infeasible tasks by either identifying the
infeasible part and finding a design that satisfies the feasible
part or searching for multiple designs that together satisfy the
entire task. We compare our approach to a baseline genetic
algorithm in a series of increasingly complex environments.

I. INTRODUCTION

Modular robots are collections of modules, each capable
of sensing and actuation, that are arranged and connected
in different configurations, depending on the task they are
performing [1], [2]. These tasks can vary from locomotion
[2], [3] to manipulation [2], to complex high-level tasks as
in [4], [5]. While such robots can be tailored to the task
at hand, manually coming up with a configuration to do a
specific task is a tedious process due to the large design
space that contains both discrete and continuous parameters,
and it involves reasoning about complex kinematic equations.
This gives rise to the challenge of automatically synthesizing
modular robot configurations and controls based on specific
tasks. In this paper, we focus on solving the design problem
for a particular kind of modular robots – modular manipu-
lators which are composed of one degree of freedom (DoF)
modules, links and mounting brackets (see Fig. 1).

Fig. 1: Modular manipulator. (A) One DoF X-Series Actuator
(Hebi Robotics); (B) Four DoFs robotic arm built using X-
Series Actuators, links and mounting brackets [6].

∗Thais Campos and Jeevana Priya Inala contributed equally to this work.
1Thais Campos and Hadas Kress-Gazit are with the Sibley School of

Mechanical and Aerospace Engineering, Cornell University, Ithaca NY
14850, USA {tcd58, hadaskg}@cornell.edu

2Jeevana Priya Inala and Armando Solar-Lezama are with the De-
partment of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge MA 02139, USA {jinala,
asolar}@csail.mit.edu

This work was supported by ONR N00014-17-1-2699 and NSF CNS-
1837506

The synthesis problem is: given a task, here a set of points
in 3D and obstacles in the environment, find a design such
that the manipulator can trace a trajectory that includes all
the task points without colliding with the obstacles. Our
approach divides the problem into two parts—reachability
synthesis and trajectory verification. In the reachability syn-
thesis step, we solve a set of constraints on the design so
that the manipulator can reach the task points individually.
Then, after a design is found, the trajectory verification
step searches for a trajectory connecting the task points to
ensure that the task is feasible by the design found (i.e. the
manipulator can move between the individual points). This
is done using RRT* [7], a sampling-based motion planner.

For solving the constraints on the design, recent ap-
proaches include a variety of optimization techniques, such
as Covariance Matrix Adaptation [8], DIRECT Algorithm
[9] and Simulated Annealing and its variations [10], [11].
Genetic Algorithms (GA) and its variations are the most used
technique [12]–[17]. GA is a heuristic optimization technique
that can handle the mixed discrete and continuous search
space. However, approaches based on GA have difficulties
finding solutions when the search space is highly constrained
(e.g. a large number of obstacles).

In this paper, we use the Sketch synthesis system [18],
[19] to solve the constraints on the design. Sketch allows
users to specify a synthesis problem as a partial program
with unknown parameters and a set of assertions to specify
the constraints. For problems involving discrete and con-
tinuous variables, Sketch uses a combination of numerical
optimization and Boolean reasoning, a variant of the al-
gorithm in [20]. A key feature of Sketch is that it works
with a symbolic representation of the search space and the
constraints, which allows it to search in a very directed
manner compared to GA that only sees the fitness of the
individual candidates it tries. The Sketch algorithm is sound
i.e. if a solution is found, it is guaranteed to be correct—
and is efficient in practice. However, the algorithm is not
complete, so there might be scenarios for which a solution
exists but the algorithm cannot find one in the allotted time.

The main challenge in using Sketch for design synthesis
is to formulate the problem in such a way that the synthesis
problem becomes tractable. The synthesis problem involves
both searching over the design space and solving the inverse
kinematics (IK) problem to assert that the task can be done
by the manipulator. We found that a naı̈ve formulation of
the IK problem, based on using the forward kinematics
equations, introduces numerous local minima for numerical
optimization. In this paper, we present a new formulation
to solve the IK problem that includes constraints to avoid

collisions incorporated directly into the optimization.
Unique to our approach is the ability to synthesize de-

sign(s) for partially infeasible tasks. If the entire task cannot
be solved by a single design configuration, our approach can
either separate the task into feasible and infeasible portions
for one best configuration or find multiple configurations that
together are capable of achieving the whole task, if they exist.

In summary, the paper’s contributions are:

• A framework for synthesizing provably-correct design
and control for modular manipulators.

• An approach that handles partially infeasible tasks.
• Comparison to an approach based on genetic algorithms.

II. DEFINITIONS

We introduce definitions regarding modular manipulators
based on the Denavit-Hartenberg (DH) convention [21]. For
notation, we use the . operator to refer to named parameters
of an item; and, [.] with an index to refer to a specific item
of an enumerated variable. We use {a..b} to denote discrete
intervals and [a, b] for continuous intervals.

Definition 1 (Module): A module m is a single atomic
unit of a manipulator which is composed of one rotational
DoF (actuator) and one link (as shown in Fig. 2). It is defined
as the tuple mj = 〈rj , αj , dj〉 and has a local coordinate
frame (−→xj ,−→yj ,−→zj) associated to it. The origin of the local
coordinate frame is at the base of the module. The z-axis
is the axis of rotation of the actuator, the x-axis is chosen
parallel to the previous link according to the DH convention,
and the y-axis follows the right hand rule. The symbol rj is
the link length, αj is the angle between −−→zj−1 and −→zj , and
dj is the offset of the actuator along −→zj . We assume α1 = 0
i.e. the axis of the rotation of the first actuator coincides
with the z-axis of the global coordinate frame. Here, rj
is a continuous value in [0, rmax] for a chosen maximum
length rmax. Similarly, αj is a continuous value in [0, π]. The
offsets dj are fixed and depend on the actuator’s thickness,
for example, for the X-series actuators they are 5.5 cm.

Fig. 2: The structure of a 2 DoF manipulator. The purple
box represents a single module which contains an actuator
(cylinder) and a link

−→
l1 . Each actuator has a coordinate frame

attached to it (−→xj ,−→yj ,−→zj).

Definition 2 (Configuration): A configuration C
is defined as a list of nmod modules i.e. C =
{m1,m2, · · · ,mnmod} such that the end of module mj

is connected to the base of module mj+1. Moreover, the
end of mnmod is the end-effector and m1 is fixed at the
origin of the global frame.

Definition 3 (Joint angle (control)): A joint angle θj of
a module is the angle between the module’s link and the
x-axis −→xj about −→zj (see Fig. 2). We use Θ to denote the
joint angles of all the modules of the manipulator, Θ =
{θ1, θ2, · · · , θnmod}.

Definition 4 (State): For a configuration C and a control
Θ, the state of the manipulator, denoted as P (C,Θ) =
{p0, p1, · · · , p2nmod} ∈ R(2nmod+1)×3, is the global 3D Carte-
sian coordinates of the 2nmod + 1 points that define the end
points of all the links in C, in addition to the origin, as shown
in Fig. 2.
We overload the symbol P to also refer to a variable for
a state. We define P.−→vh = −−−−→ph−1ph for h ∈ {1..2nmod} to
denote the line segments between every pair of neighboring
points in P . The link segment of module j is defined as
P.
−→
lj = P.−→v2j = −−−−−→p2j−1p2j . The position of the end-effector

is given by P.end = p2nmod . The z-axis of the module-fixed
frame is P.−→zj = P.−−−→v2j−1 = −−−−−−−→p2j−2p2j−1.

A state P ′ is “valid” for a manipulator with configuration
C iff there exists a control Θ such that P (C,Θ) = P ′.

Definition 5 (Task): A task T is defined as a set of ntask
points in the global reference frame.

Definition 6 (Obstacles): The environment for the manip-
ulator is characterized by a set of nobs obstacles, O. An
obstacle o ∈ O is modeled as a sphere described by its
center’s position in the global reference frame 〈xc, yc, zc〉
and its radius rc.

Definition 7 (Collision-Free Workspace): Given a set of
obstacles O and a configuration C, the collision-free
workspace of the manipulator, denoted as W(C, O), in-
cludes all states that the manipulator can achieve with-
out colliding with the obstacles or the manipulator itself.
W (C,O) = {P | P is a valid state of the manipulator ∧
NoCollision(P)}. The constraints for NoCollision are for-
mally defined in Equations 2 and 3 in the next section.

Definition 8 (State Space Trajectory): A trajectory, Γ , in
the state space is a connected set of states of the manipulator.

We use End(S) to refer to the global 3D Cartesian
coordinates of the end-effector for all states in the set S.

III. APPROACH

A. Problem Formulation and Overview

In this paper, we address the challenge of finding a single
design that satisfies a task (Problem 1), but if no solution is
found, we provide partial solutions (Problems 2 and 3):

Problem 1 (Single-Design Synthesis): Given a task T and
obstacles O, the goal is to find a configuration C such that
there is a trajectory Γ in the collision-free workspace that
can trace all points in T . Formally,

Find C, Γ s.t. Γ ⊆W (C,O) ∧ T ⊆ End(Γ)
We break the synthesis problem of finding both the

configuration and the trajectory into two parts. First, we
synthesize a configuration C that can reach all the task points
individually i.e.

Find C s.t. T ⊆ End(W (C,O)) (Reachability)

Single	Design	
Synthesis	for	
reachability

INPUT
Task

Obstacles

Success
Configuration

Controls

Sketch
Search	for	a	trajectory	

to	cover	 the	task	
(feasible	subset)

Success
OUTPUT

Configuration(s)
Controls

RRT*

Failure

Maximal	feasible	
subtask	for	
reachability

Multiple	designs	
synthesis	for	
reachability

Sketch

OR
Success

Configuration
Feasible subset

ControlsSuccess
Configurations,	Controls

Failure
User	adds	more	points	to	the	task

Sketch

Find	a	configuration	
for	reachability

Configuration
Controls

GA

Verify	that	the	
solution	reaches	the	

points

Configuration
Controls

Failure
(try	again)

Success

Fig. 3: Overview of the approach (left). For comparison, we show the equivalent of the dotted box for GA (right).

Second, we use the configuration found by the above problem
(C0) to search for a trajectory i.e.

Find Γ s.t. Γ ⊆W (C0, O) ∧ T ⊆ End(Γ) (Trajectory)

The reachability problem is solved by encoding the necessary
constraints in Sketch. To find a trajectory, we use a motion
planning algorithm, specifically RRT* [7]. The RRT* algo-
rithm starts from the joint angles (which are derived from the
states) found by Sketch for T [i] and incrementally constructs
the path by sampling joint angles that satisfy the NoCollision
constraints until it reaches the joint angles for T [i + 1]. If
a trajectory is found, the configuration and the controls to
execute the trajectory are the returned solution. The motion
planner will not find a trajectory if the task is spread across
many disconnected components in the workspace of C0. In
this case, we ask the user to intervene and add more points
from the anticipated trajectory to the task and then, the
design process is repeated. Adding more points increases the
likelihood that the task is in a single connected component
of the workspace. Fig. 3 depicts our approach.

Problem 2 (Maximal Feasible Subtask): If no solution is
found for problem 1, we separate the task into the feasible
subset TF and infeasible subset TI and find a configuration
C such that the feasible subset can be achieved without any
collisions. Similar to problem 1, this problem is split into
two parts.

maximize
C,TF

|TF | s.t. TF ⊆ T ∧

TF ⊆ End(W (C,O)) (Reachability)
∃Γ. Γ ⊆W (C,O) ∧ TF ⊆ End(Γ) (Trajectory)

Problem 3 (Multiple-Designs Synthesis): If no solution
is found for problem 1, we find nconf configurations,
C1, C2, · · · , Cnconf , such that T can be achieved, without
collisions, by the combination of configurations.

minimize
C1,··· ,Cnconf

nconf s.t.

T ⊆ End(W1) ∪ · · · ∪ End(Wnconf) (Reachability)
∀u ∈ [1, nconf]. ∃Γu. Γu ⊆Wu ∧

T ⊆ End(Γ1) ∪ · · · ∪ End(Γnconf) (Trajectory)

where Wu =W (Cu, O).

We will now describe the encodings for the three reacha-
bility synthesis problems in the Sketch language.

B. Encoding Constraints for Single Design Synthesis

Finding a single configuration C to reach the task points
requires searching over the discrete parameter nmod, the
number of modules in the configuration, and the continuous
parameters rj and αj of the modules. Since the number of
discrete choices for nmod is small (we consider 2 to 4 DoF
manipulators) and a smaller value for nmod is preferable, we
explicitly enumerate over the possible values for nmod. Thus,
we solve one synthesis problem for each different value of
nmod in a bounded synthesis process [22] that terminates
when a solution is found. The following is an encoding of
the synthesis problem for a fixed nmod.

A straightforward approach is to search for the configura-
tion parameters along with the joint angles Θi for the i-th
point in the task such that the forward kinematics would
lead the manipulator to the desired point without collisions.
The main disadvantage of this approach is that most of
the constraints such as the end-effector constraint and the
collision avoidance constraints are in terms of the state of
the manipulator; however, the function that determines the
state from the free variables, Θi, is composed of highly
non-linear functions (arising from the forward kinematics
equations). This gives rise to numerous local minima making
the synthesis problem hard.

We propose an alternate approach that encodes the con-
straints directly in terms of the state of the manipulator. In
this encoding, the synthesis problem is to find the parame-
ters of the different modules r1, · · · , rnmod , c α1, · · · , c αnmod

along with the states of the manipulator P1, · · · , Pntask to
reach each of the ntask points in the task where c αj

represents cos(αj). We use the subscript i to index a point
in the task and j to index a module of the manipulator.

The first constraint establishes that the end-effector of the
manipulator reaches the task points.

Constraint 1 (End-effector): ∀i ∈ {1..ntask},

Pi.end = T [i] (1)
The collision avoidance constraints are defined as follows:

First, to avoid collision with obstacles, the distance between
all line segments that constitute the manipulator and the
center of all the spheres has to be greater than their respective
radii + thickness of the modules (∆).

Constraint 2 (Obstacle avoidance): ∀i ∈ {1..ntask}, ∀h ∈
{1..2nmod}, ∀o ∈ O,

Dist (Pi.
−→vh, 〈o.xc, o.yc, o.zc〉) > o.rc +∆ (2)

where Dist is the minimal distance between a line segment
and the center of a sphere.

Second, to avoid self-collision, the distance between all
non-consecutive line segments has to be greater than the
thickness of the modules (2∆).

Constraint 3 (Self-collision avoidance): ∀i ∈ {1..ntask},
∀h ∈ {1..2nmod}, ∀h′ ∈ {h+ 2..2nmod},

Dist (Pi.
−→vh, Pi.

−→vh′) > 2∆ (3)
The link lengths must be fixed, i.e. the lengths of the link

segments of each module in the different states are the same
and equal to the length of the module in the configuration
parameters.

Constraint 4 (Consistent link length): ∀i ∈ {1..ntask},
∀j ∈ {1..nmod},

||Pi.
−→
lj || = rj (4)

Similarly, the next constraint is to ensure that the angle
between the axes of two consecutive modules is consistent
and equal to α in the configuration parameters.

Constraint 5 (Consistent alpha): ∀i ∈ {1..ntask}, ∀j ∈
{2..nmod},

Pi.
−→zj · Pi.

−−→zj−1 = d ∗ d ∗ c αj (5)

Pi.
−→zj · (Pi.

−−→zj−1 × Pi.
−−→
lj−1) ≥ 0 (6)

Here, (6) is required to restrict αj to [0, π]. d is the fixed
offset distance.

Geometrical constraints enforced by the fixed actuator
offsets d are encoded as follows:

Constraint 6 (Offset): ∀i ∈ {1..ntask}, ∀j ∈ {1..nmod},

||Pi.
−→zj || = d (7)

Finally, to facilitate manipulator assembly, we enforce that
the axis of the rotation of any actuator must be orthogonal
to the previous and next link segments.

Constraint 7 (Orthogonality): ∀i ∈ {1..ntask},

∀j ∈ {1..nmod}. Pi.
−→
lj · Pi.

−→zj = 0 (8)

∀j ∈ {2..nmod}. Pi.
−−→
lj−1 · Pi.

−→zj = 0 (9)
With these constraints, the synthesis problem is:

Find rj , c αj , Pi i ∈ {1..ntask}, j ∈ {1..nmod}
s.t. constraints (1 - 9)

C. Maximal Feasible Subtask

If Sketch does not find a single configuration to solve
the task, it must solve either problem 2 or problem 3. In
problem 2, the goal is to find a configuration that can reach
as many points as possible. In addition to the number of
modules (nmod), the new discrete choices in this problem
include the number of feasible task points (denoted as
nf, nf ≤ ntask) and whether an individual point in the task
belongs to the feasible set. To solve this, the system iterates
over a series of synthesis problems for different choices of

nf and nmod, and chooses a solution that first maximizes nf
and then minimizes nmod.

Given nmod and nf, we make the following changes to the
encoding used to solve problem 1. First, to indicate which
points in the task are feasible, we introduce ntask boolean
variables {b1, b2, · · · , bntask} for each point in the task where
bi = 1 implies that the point i is feasible. Second, we define
conditional versions of some of the previous constraints so
that the constraints need to be satisfied only if bi = 1.

Constraint 8 (Conditional): ∀i ∈ {1..ntask}, ∀j ∈
{1..nmod}, ∀h ∈ {1..2nmod}, ∀h′ ∈ {h+ 2..2nmod}, ∀o ∈ O

bi =⇒ Pi.end = T [i] ∧
Dist (Pi.

−→vh, 〈o.xc, o.yc, o.zc〉) > o.rc +∆ ∧ (10)
Dist (Pi.

−→vh, Pi.
−→vh′) > 2∆ ∧

||Pi.
−→
lj || = rj ∧

Pi.
−→zj · Pi.

−−→zj−1 = d ∗ d ∗ c αj

The synthesis problem is encoded as:

Find rj , c αj , Pi, bi i ∈ {1..ntask}, j ∈ {1..nmod}

s.t.
ntask∑
i=1

bi >= nf ∧ constraints (6-10)

The constraint
∑ntask

i=1 bi >= nf ensures that the cardinality
of the feasible set is at least nf. We do not condition the
constraints (6) - (9) since they are geometric constraints and
do not depend on either T or the parameters (rj , αj).

D. Multiple Designs Synthesis

As an alternative to problem 2, one could also choose to
solve problem 3 that attempts to find multiple configurations
that together reach all the points in the task. Here, we solve
one synthesis problem for the different choices of nmod and
the number of configurations (nconf) and choose the solution
that first minimizes nconf and then minimizes nmod.

For the encoding, we introduce ntask ∗ nconf boolean
variables bui for each point i and configuration u and the
synthesis problem is: Find

ruj , c α
u
j , P

u
i , b

u
i i ∈ {1..ntask}, j ∈ {1..nmod}, u ∈ {1..nconf}

s.t. ∀i.
∨
u

(bui = 1) ∧ (∀u. constraints (6-10))

where
∨

u(b
u
i = 1) ensures that at least one configuration

can reach the point i.

IV. RESULTS

In this section, we evaluate our approach on various tasks
and compare the results with a genetic algorithm based
approach (baseline). We divide the tasks into three categories
– (a) feasible tasks without obstacles, (b) feasible tasks with
obstacles, and (c) partially infeasible tasks. In this evaluation,
we answer the following questions: How does our approach
and the baseline scale with the number of points and the
number of DoFs? Can the approaches find a design config-
uration when the environment is highly constrained due to
obstacles? Can our approach find a single configuration or

(a) (b)

Fig. 4: (a) The solution returned by our approach for nobs =
2, ntask = 5 and nmod = 3. The actuators are in red, the links
in black, the task points are the blue dots, and the origin is
at the center of the green square. (b) The solution returned
by our approach for nobs = 5, ntask = 3 and nmod = 3.

a set of configurations for partially infeasible tasks? Finally,
we present examples that highlight the interaction between
design synthesis and verification through motion planning.

In the examples, we treat the approach as successful if it
was able to find a configuration and a set of joint angles
that drives the end-effector to a distance smaller than 1mm
from each of the task points while avoiding collisions. For
all cases, we set rmax = 1m. All the simulations were run
on a standard desktop machine 64 bit running 14.04 Ubuntu
with 8 GB RAM and 3.6 GHz processor.

A. Baseline - GA

The population of configurations is initially generated at
random and evaluated according to a score given by the
fitness function; for each configuration, we solve the IK
problem for every point in the task to get Θi and Pi. The
fitness function is:

F =
1∑ntask

i=1 Fi
where

Fi = || Pi.end− T [i] || +

{
107, if there is collision
10−7, otherwise

The 20 configurations with the highest fitness scores com-
pose the second generation. The next generations are altered
by the mechanisms of mutation, selection and crossover.

The algorithm terminates if a configuration in the popula-
tion has F > 1/(ntask∗0.001). The algorithm also terminates
and returns the best configuration so far when the maximum
number of iterations (here 15) is reached or the runtime
exceeds a maximum value. For the GA approach, we check
whether the solution is correct by calculating the forward
kinematics; if the solution does not satisfy the task, we reseed
the population and re-run the algorithm.

B. Feasible task without obstacles

We randomly generated 5 feasible tasks for each ntask =
{3, 6, 9} and nmod = {2, 3, 4}. To create a feasible task, we
randomly generate C and a set of controls Θ then, using FK,
we calculate T , which is the input for both approaches.

The success rates of the two approaches are shown in
Table I. It can be seen that Sketch can solve all the tasks
irrespective of the number of points or number of DoFs.

Genetic Algorithm Sketch

Task DoFs %
Success Runtime (s) %

Success Runtime (s)

3
Points

2
3
4

60
100
100

42.8 ± 3.1
46.6 ± 23.0
74.5 ± 7.5

100
100
100

0.8 ± 0.01
1.3 ± 0.01
2.9 ± 0.1

6
Points

2
3
4

80
100
100

105.6 ± 45.8
152.0 ± 54.1
145.9 ± 10.9

100
100
100

3.7 ± 3.4
5.3 ± 2.5
11.5 ± 3.6

9
Points

2
3
4

60
100
100

125.1 ± 6.4
311.9 ± 115.7
211.5 ± 5.1

100
100
100

9.9 ± 5.3
6.1 ± 5.2

32.7 ± 13.7

TABLE I: Rate of success for a feasible task in an environ-
ment without obstacles for GA and Sketch.

Obstacle
radius (m)

GA
solved? Runtime Sketch

solved? Runtime

0.2 Yes 2.3s Yes 3.1s
0.4 Yes 48.47min Yes 2.8s
0.6 No - Yes 9.4s
0.8 No - Yes 13.6s
1.0 No - Yes 10.6s

TABLE II: GA and Sketch results for nobs = 1, nmod = 3
and ntask = 5.

Genetic algorithm, on the other hand, fails some tasks with
2 DoFs given a maximum runtime of 10min. This is because
with fewer DoFs, there are less configurations that can satisfy
the task which decreases the likelihood of GA finding a
solution. This evaluation shows that our approach performs
well even when the set of valid solutions is highly restricted.

C. Feasible task with obstacles

In this evaluation, we introduce an obstacle in the environ-
ment. We fix nmod = 3 and ntask = 5, but increase the size of
the obstacle; the larger the obstacle, the more constrained the
environment is. The results are shown in Table II. Again, our
approach is able to solve all the tasks but GA can only solve
for small obstacles given a maximum runtime of 60min.

Next, we consider environments with multiple obstacles
(more obstacles imply more constrained environments). Fig.
4(a) shows an example with two obstacles and Fig. 4(b)
shows an example with five obstacles. Our approach can find
solutions for both the tasks; in contrast, the solutions found
by GA either collide with the obstacles or cannot reach the
points. The results again show that our approach works better
than GA in highly constrained environments.

Fig. 5: Solution for Problem 2 that satisfies nf = 5, ntask = 6,
nobs = 1, and nmod = 3. The infeasible point is the purple
square.

(a) (b)

Fig. 6: (a) First, and (b) Second configurations returned for
Problem 3 with nconf = 2.

(a) (b)

Fig. 7: (a) Solution for Problem 2 that satisfies nf = 5,
nobs = 3 and nmod = 3. The infeasible points are the purple
squares. (b) Solution for Problem 1 with ntask = 3, nconf = 1,
nobs = 3 and nmod = 4.

(a) (b)

Fig. 8: (a) Collision-free workspace of solution returned
for Problem 1 with nobs = 2, ntask = 2, and, nmod = 2.
RRT* was not able to find a trajectory due to disconnected
workspace. (b) Collision-free workspace after additional user
input (yellow dot), and trajectory connecting T (red curve).

Fig. 9: Solution returned for Problem 1 with nobs = 6, ntask =
5, and, nmod = 3. The blue dots are the original task, the
others are additional user inputs.

D. Partially infeasible task

We considered two partially infeasible tasks (Fig. 5 and
7). The first task has 6 points and 1 obstacle. Sketch was not
able to find a solution for a single configuration (Problem 1)
in the allotted time. Solving Problem 2 resulted in classifying
one point as infeasible. Fig. 5 shows the solution found by
Sketch, in which the purple square indicates the infeasible
point. In addition, our approach was able to find a solution
for Problem 3 with two configurations that can satisfy the
entire task, as shown in Fig. 6.

The second task has 8 points and 3 obstacles. Again
Sketch could not find a solution for Problem 1, however it
solved Problem 2, classifying three of the eight task points
as infeasible (Fig. 7a). Sketch could not find a solution for
Problem 3 with nmod = 3; instead we took the infeasible set
TI from Problem 2 and solved Problem 1 where T = TI .
Our approach was able to find a solution (Fig 7b) for those
3 points using a 4 DoF manipulator, a more complex design
than the one found for the original feasible set TF which
was a 3 DoF design.

E. Iterative task refinement

For the tasks discussed so far, we were able to find a
trajectory for the synthesized manipulator that connects the
task points, thus ensuring the task can be achieved. Here,
we consider a task that requires additional user input. Fig.
8a shows the collision-free workspace (in black) as well as
the task points (blue dots) for the configuration returned as
solution for Problem 1 with nobs = 2, ntask = 2 and nmod =
2. As it can be seen, the workspace is disconnected, thus it
is impossible for RRT* to find a feasible trajectory. Fig. 8b
shows the new collision-free workspace for the configuration
returned after a new point (yellow dot) is added by the user
to the task, and the trajectory found (red curve).

Fig. 9 shows a more complex environment that needs
multiple user interactions. The two blue dots are the original
task, the yellow was the first point added by the user, the
magenta the second and the cyan the third.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present a framework for synthesizing
provably-correct task-based designs for manipulators. Our
approach is able to handle partially infeasible tasks and can
generate more than one configuration if the task cannot be
solved by a single one. In addition, our approach outperforms
GA in highly constrained environments.

The limitations of the approach are that it is not complete,
i.e. it may not find a solution within the time constraints even
if a solution exists, and it requires user input when a design
is synthesized but a trajectory is not found.

In the future, we will explore techniques to automatically
infer the new points required for trajectory generation. We
will also encode more complex tasks such as following
trajectories, as well as additional physical constraints such
as torque limits. Moreover, we will extend our approach to
handle more complex modular robots that combine locomo-
tion and manipulation.

REFERENCES

[1] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson,
E. Klavins, and G. S. Chirikjian, “Modular self-reconfigurable robot
systems [grand challenges of robotics],” IEEE Robotics & Automation
Magazine, vol. 14, no. 1, pp. 43–52, 2007.

[2] M. Yim, D. G. Duff, and K. D. Roufas, “Polybot: a modular re-
configurable robot,” in Robotics and Automation, 2000. Proceedings.
ICRA’00. IEEE International Conference on, vol. 1. IEEE, 2000, pp.
514–520.

[3] B. Salemi, W.-M. Shen, and P. Will, “Hormone-controlled metamor-
phic robots,” in Robotics and Automation, 2001. Proceedings 2001
ICRA. IEEE International Conference on, vol. 4. IEEE, 2001, pp.
4194–4199.

[4] G. Jing, T. Tosun, M. Yim, and H. Kress-Gazit, “An end-to-end system
for accomplishing tasks with modular robots.” in Robotics: Science
and Systems, 2016.

[5] T. Tosun*, J. Daudelin*, G. Jing, H. Kress-Gazit, M. Campbell, and
M. Yim, “Perception-informed autonomous environment augmentation
with modular robots,” in IEEE International Conference on Robotics
and Automation.

[6] HebiRobotics. [Online]. Available: https://www.hebirobotics.com/
x-series-smart-actuators

[7] S. Karaman and E. Frazzoli, “Sampling-based algorithms for
optimal motion planning,” Int. J. Rob. Res., vol. 30, no. 7, pp.
846–894, Jun. 2011. [Online]. Available: http://dx.doi.org/10.1177/
0278364911406761

[8] S. Ha, S. Coros, A. Alspach, J. Kim, and K. Yamane, “Task-based
limb optimization for legged robots,” in IEEE/RSJ Intelligent Robots
and Systems (IROS). IEEE, 2016, pp. 2062–2068.

[9] E. Van Henten, D. Vant Slot, C. Hol, and L. Van Willigenburg, “Opti-
mal manipulator design for a cucumber harvesting robot,” Computers
and electronics in agriculture, vol. 65, no. 2, pp. 247–257, 2009.

[10] C. Baykal and R. Alterovitz, “Asymptotically optimal design of
piecewise cylindrical robots using motion planning,” in Robotics:
Science and Systems, 2017.

[11] S. Patel and T. Sobh, “Task based synthesis of serial manipulators,”
Journal of advanced research, vol. 6, no. 3, pp. 479–492, 2015.

[12] W. K. Chung, J. Han, Y. Youm, and S. Kim, “Task based design
of modular robot manipulator using efficient genetic algorithm,” in
Robotics and Automation, 1997. Proceedings., 1997 IEEE Interna-
tional Conference on, vol. 1. IEEE, 1997, pp. 507–512.

[13] J.-O. Kim and P. K. Khosla, “A formulation for task based design of
robot manipulators,” in Intelligent Robots and Systems’ 93, IROS’93.
Proceedings of the 1993 IEEE/RSJ International Conference on, vol. 3.
IEEE, 1993, pp. 2310–2317.

[14] I.-M. Chen and J. W. Burdick, “Determining task optimal modular
robot assembly configurations,” in Robotics and Automation, 1995.
Proceedings., 1995 IEEE International Conference on, vol. 1. IEEE,
1995, pp. 132–137.

[15] S. Farritor, S. Dubowsky, N. Rutman, and J. Cole, “A systems-level
modular design approach to field robotics,” in IEEE International
Conference on Robotics and Automation, 1996, pp. 2890–2895.

[16] G. S. Hornby, H. Lipson, and J. B. Pollack, “Evolution of generative
design systems for modular physical robots,” in Robotics and Automa-
tion, 2001. Proceedings 2001 ICRA. IEEE International Conference
on, vol. 4. IEEE, 2001, pp. 4146–4151.

[17] S. Tabandeh, W. Melek, M. Biglarbegian, S.-h. P. Won, and C. Clark,
“A memetic algorithm approach for solving the task-based configura-
tion optimization problem in serial modular and reconfigurable robots,”
Robotica, vol. 34, no. 9, pp. 1979–2008, 2016.

[18] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat,
“Combinatorial sketching for finite programs,” ACM Sigplan Notices,
vol. 41, no. 11, pp. 404–415, 2006.

[19] A. Solar-Lezama, “Open source sketch synthesizer,” 2012. [Online].
Available: https://bitbucket.org/gatoatigrado/sketch-frontend/

[20] J. P. Inala, S. Gao, S. Kong, and A. Solar-Lezama, “REAS:
combining numerical optimization with SAT solving,” CoRR, vol.
abs/1802.04408, 2018. [Online]. Available: http://arxiv.org/abs/1802.
04408

[21] M. W. Spong and M. Vidyasagar, Robot dynamics and control. John
Wiley & Sons, 2008.

[22] B. Finkbeiner and S. Schewe, “Bounded synthesis,” International
Journal on Software Tools for Technology Transfer, vol. 15, no. 5-
6, pp. 519–539, 2013.

