Safe Human-Interactive Control Modulo Fault

Jeevana Priya Inala', Yecheng Jason Ma?, Osbert Bastani?, Xin Zhang?, Armando Solar-Lezama

Abstract—Ensuring safety for human-interactive robotics
is a important due to the potential for human injury. The
key challenge is defining safety in a way that accounts for
the complex range of human behaviors without modeling the
human as an unconstrained adversary. We propose a novel
approach to ensuring safety in these settings. Our approach
focuses on defining actions that both the robot and human are
expected to take to avoid an accident—e.g., brake to avoid rear-
ending the other agent. These actions should be defined in so
that if one of the agents does not take these actions and an
accident occurs, then we can reasonably consider them to be at
fault for that accident. We refer to this notion of safety as safety
modulo fault. Then, we propose an algorithm that overrides an
arbitrary given controller as needed to ensure that the robot
is safe modulo fault. We evaluate our approach in a simulated
environment, interacting with both real and simulated humans.

I. INTRODUCTION

Robots are increasingly operating in environments where
they must interact with humans, such as collaborative grasp-
ing [1], [2] and autonomous driving [3], [4], [S], [6]. As
a consequence, there has been much interest in designing
planning and control algorithms for human-robot interaction.

Ensuring safety for such robots is paramount due to the
potential to inflict harm on humans [7]. These challenges are
particularly salient in settings such as autonomous driving,
where robots and humans may have disjoint or conflicting
goals—e.g., a self-driving car that needs to make an unpro-
tected left turn at a busy intersection [5]. The key challenge is
how to define safety for human-interactive robots. Modeling
the human as an adversary is one approach to defining safety,
but would be prohibitively conservative.

Another approach is to train a machine learning model to
predict human actions [8], [9], and ensure safety with respect
to this model. If the model captures all actions exhibited by
humans, then this approach ensures safety. However, there
are a number of reasons why the model may not satisfy
this property. For instance, different humans may exhibit
very different behaviors [6]—e.g., people in a lab may act
differently than people on a street, or people in different
regions may act differently. Collecting data from all possible
settings can be very challenging. If a human behavior is not
exhibited in the data used to train the model, then the model

1Jeevana Priya Inala and Armando Solar-Lezama are with the De-
partment of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA {jinala,
asolar}@csail.mit.edu

2Yecheng Jason Ma and Osbert Bastani are with the Department of Com-
puter and Information Science, University of Pennsylvania, Philadelphia, PA
19104, USA {jasonyma, obastani}@seas.upenn.edu

3Xin Zhang is with the Department of Computer Science and Technology
at Peking University, Beijing, 100871, China xin@pku.edu.cn

1

[30 T2 TTTTRERRE

Fig. 1.
an intersection (for 25 timesteps). Left: The robot passes before the human,
leveraging the fact that a responsible human would slightly brake to allow
the robot to cross safely. Right: Human arrives at the intersection first; the
robot triggers the shield to brake and allow the human to cross first.

Trajectories showing a robot (red) and a human (blue) interacting at

may not account for it. More fundamentally, even the best
machine learning models rarely make zero errors, and errors
can correspond to actions missed by the model.

An alternative approach, which has been termed
responsibility-sensitive safety (RSS) [10], is to manually
specify the range of acceptable robot actions in various
scenarios. As the designer of the robot controller, it is our job
to ensure that acceptable actions only include safe actions—
e.g., according to legal or social norms. In particular, if
the robot acts within this range, then any accident should
be considered the fault of the human—e.g., if they cause
an accident by running a red light. However, manually
defining acceptable robot actions for all possible scenarios
is challenging, especially for robots operating in open-world
environments. For instance, in [10], they formally define
acceptable actions for a limited number of scenarios such
as changing lanes, but autonomous driving is notoriously
challenging precisely due to the vast number of corner cases.

We propose a novel approach for ensuring safety in
human-interactive robotics systems, based on two concepts:

o Modeling fault: Rather than specify actions the robot
is allowed to take (as in RSS), we specify actions the
human is expected to take to avoid an accident.

« Conservative overapproximation: We conservatively
overapproximate the dynamics for a given fault model.

First, our notion of fault captures the idea that we can
reasonably expect the human to take a limited range of
evasive maneuvers to avoid an accident—e.g., if the robot
gradually slows to a stop, then we may expect the human

to also slow down to avoid rear-ending it.'> If the robot is
on a highway, coming to a stop is more dangerous; in this
case, we might conservatively restrict to the case where the
robot pulls over to the shoulder before coming to a stop.
Similarly, we may restrict the robot from coming to a stop
in an intersection. Specifying a notion of fault provides a
way to define safety; we refer to such a safety constraint as
safety modulo fault.

Our concept of fault is related to RSS, but differs in two
key ways: (i) we specify constraints on the human actions
rather than the robot actions, and (ii) rather than specify the
set of all actions that the robot is allowed to take, we only
need to specify a single sequence of actions that the human
is expected to take if necessary to avoid an accident.

Next, given a definition of fault, we propose an algorithm
for ensuring safety modulo fault. Rather than design a spe-
cific controller that tries to achieve the desired goal subject
to safety modulo fault, we decompose the problem into
two parts: (i) designing a controller that achieves the goal,
and (ii)) modifying this controller to ensure safety modulo
fault. More precisely, we build on the concept of shielding,
which composes a high-performing controller with a backup
controller in a way that guarantees safety [12], [13]. In
particular, we extend the model predictive shielding (MPS)
algorithm [14], [15] to the setting of safety modulo fault. Our
algorithm, called MPS modulo fault, converts an arbitrary
given controller into one that is guaranteed to be safe, while
trying to use the given controller as frequently as possible.
At a high level, it does so by using on-the-fly verification to
determine whether it is safe modulo fault to use the given
controller. If so, it uses the given controller; otherwise, it
uses an appropriate backup action.

Finally, we empirically evaluate our approach in a simula-
tion, including both settings where the humans are simulated
and settings where the human is controlled by an real person
via keyboard inputs. We demonstrate that our MPS modulo
fault algorithm enables the robot to avoid accidents both
with real and simulated humans, even when combined with
a naive controller that altogether ignores the humans.

Figure 1 illustrates how our MPS modulo fault algorithm
ensures safety while interacting with a human driver without
being overly cautious. It assumes that the human will at least
slightly brake to avoid an accident (left). If it still cannot
guarantee safety, then it allows the human to go first (right).

In summary, our contributions are: a formal definition of
safety modulo fault for human-interactive robotics systems
(Section III), an algorithm for ensuring safety modulo fault of
an arbitrary given controller (Sections IV), and an empirical
evaluation of our approach (Section V).

'We note that the human is not expected to take evasive maneuvers
such as swerving or speeding up to avoid an accident; also, we assume
a reasonable amount of time for the human to brake and come to a stop.

2This kind of behavior is exhibited by human drivers, who occasionally
come to a stop in the middle of the road to pick up or drop off passen-
gers [11]. Thus, in this situation, we believe it is reasonable to expect human
drivers to slow down to avoid a collision. Furthermore, in our approach, the
robot would only take this kind of action to avoid an accident.

II. PRELIMINARIES

We consider a system with a robot R and a human H.
In particular, we have 2411 = f(@¢,ur ¢, un,), Where f :
X X Ur x Uy — X is the dynamics, X C R"X is the
joint state space, Ur C R"V:E are the robot actions, and
Uy C R™.H gre the human actions. We assume the robot
acts first, and then the human (i.e., a Stackelberg game) [5].
Given an initial state g € Xy C X and two action sequences

g = (UR,0,UR,1,---) CUR

Uy = (Um0, UH,1,-..) C U

for R and H, respectively, the trajectory generated by these
actions from x(is the sequence (zg,z1,...) C X where
Ti41 = f(xt, UR,t, UH,t)~

As a running example, we consider an autonomous car.
For this problem, R is an autonomous driving robot and H
is a pedestrian or a human driver. A state € X = R® is
a vector © = (TR, YR, VR, OR, TH,YH, vy, 0p) representing
the positions (zg, yr), (xm,ym), velocities vg, vy, and an-
gles 6,0 of agents H and R, respectively. The actions
are Up = Uy = U = R?, where u = (¢, a) represents
the steering angle ¢ and the acceleration a; we assume
that |¢| < dmax and |a| < amax are bounded by constants
Pmaxs Amax € Rsq. The dynamics are

f(x,ur,upg) = =+ gr(x,ur) + gu (v, ug)

gr(z,ur) = (Vg cos g, vr sinOg, ar, vrér,0,0,0,0)

gu(w,ug) = (0,0,0,0,vg cos Oy, vy sin g, am, vadm).
For simplicity, we assume the agents cannot go backwards—
i.e., the dynamics implicitly impose vg, vy > 0.

Given a safe region Xgre C X, our goal is to ensure that

the system stays in Xjg. In our example, safety means the
robot and the human have not collided, i.e.,

Xate = {x € X | |(xr,yr) — (xm,ym)| > date},
for some constant dg,p € R.

Definition II.1. A trajectory xg, x1, ...
for all ¢t € N, and unsafe otherwise.

is safe if x; € Xgfe

III. SAFETY MODULO FAULT

Ensuring safety in the presence of an adversarial hu-
man would be impossible or at least significantly degrade
performance—e.g., to avoid an accident with an adversarial
human driver, the robot would have to maintain a very large
distance. Thus, to ensure safety, we must make assumptions
about the behavior of the human. Ideally, we want to make
the minimal possible assumptions about the behavior of the
human while still accounting for all possible behaviors of a
human acting in a responsible way. Then, as long as the robot
acts in a way that is safe according to these assumptions, the
human would be at fault for any resulting accident.

The key challenge is devising a reasonable set of assump-
tions on the human. Intuitively, our assumptions are based
on the idea that if the human can act in a safe way to avoid
an accident, then they do so (Assumption III.2). In addition,

we need to formalize what it means for the human to “be
able to act in a safe way”. We give the human great leeway
in what safe actions they consider—for instance, we could
assume the human always considers slowing down in some
manner to ensure safety (Assumption II1.8). Finally, just as
we make assumptions about how the human acts, we expect
the human to make assumptions about how the robot may
act. Again, we give the human great leeway in doing so—for
instance, we could assume that the human always accounts
for the possibility that the robot may take a safe action such
as gradually braking to avoid an accident (Assumption II1.6).
We formalize our assumptions and safety notion below.

a) Assumptions on the human objective: Our definition
of safety is based on a model of a human acting according
to a maximin objective in a receding horizon fashion. In this
objective, the “min” is the worst-case over a set of action
sequences that the human predicts the robot might take, and
the “max” portion is over the human’s own actions. In other
words, the human plans optimally according to their own
objective, while conservatively accounting for all actions they
anticipate the robot might take.

Assumption IIL.1. Given zo € X and ugro € Ug, let

oo

—. . t
@y = argmax min Zv cra(x, urg, umy), (1)

in QU TrCUR (=,
where v € (0, 1) is a discount factor, 7 is the human reward
function, (zg,1,...) is the trajectory generated by @ and
uy from xg, and U is the set of actions the human predicts
that the robot may take. Then, the human takes action uj; .

Thus, (1) says the human conservatively assumes the robot
may take any action ¥r C Ug. In addition, we assume the
human reward for reaching an unsafe state is —oo.

Assumption IIL.2. For any up € Ur and uyg € Uy, we
have rg(x,ug,ur) = —oo if and only if = & Xfe.

That is, the human driver always acts to avoid an accident.
Other than Assumption III.2, g can be arbitrary.

Remark IIL.3. The assumption that the human acts opti-
mally is strong. We use it for simplicity; in fact, we only
need to assume that the human chooses an action sequence
iy with a reward > —oo. Then, Assumption II1.2 & III.1
say that the human chooses actions %7, that will avoid an
accident assuming the robot takes actions in Ug.

Remark II1.4. For simplicity, we have assumed that U/ and
Upg are time-invariant. Our approach can easily be extended
to the case where they are time varying.

Remark III.5. The fact that real-world human drivers have
accidents contradicts Assumption III.2. There are two rea-
sons such an accident may happen: (i) there was a safe
action sequence uy C Uy that the human driver failed to
take, or (ii) if the other driver (i.e., the “robot”) takes an
action up ¢ U, that the first driver failed to anticipate. We
expect (i) might happen if one driver does not see the other.
Alternatively, (ii) might happen if one of the two drivers is

acting aggressively—i.e., either Up is overly optimistic and
one driver aggressively ignores other’s actions (e.g., braking),
or one driver takes aggressive actions outside of Ug (e.g.,
cutting in front of other driver).

b) Assumption on action sets: Assuming the human is
acting according to (1), the key challenge for the robot to
plan safely is that it does not know the human action set U
or the human-predicted robot action set Ug. Assuming we
know these values exactly is implausible. Instead, we assume
access to minimal knowledge about each of these sets.

First, we make the following assumption on the set of
actions ZjR that the human predicts the robot may take:

Assumption IIL6. We are given a robot backup action u% €
Up that is predicted by the human—i.e., u% € Ug.

That is, the human always accounts for the possibility
that the robot might take action u%. For example, we might
assume that u% is gradually braking and coming to a stop.

Remark IIL.7. For simplicity, we have assumed that u% is
time-invariant. Our approach easily extends to the case where
uY is time varying.

Next, we could make a similar assumption that we are
given a human backup action u%, € Uy—e.g., applying the
brakes. However, we might not know how quickly or slowly
the human driver is able to brake, or in what direction they
may steer. Thus, we make the following weaker assumption:

Assumption IIL8. We are given a human backup action set
Uy, that satisfies UY NU # 2.

That is, there is some action u}; € UY, that the human
considers taking (i.e., u% € Uy), but we may not know u%,.

As its name suggests, Y should only include actions that
are considered to be backup actions that might be taken by
the human driver to avoid an accident. For example, % may
contain all actions where the human driver decelerates by at
least some rate; this choice allows the human to slow down
more quickly or to steer in any direction while slowing down.
Intuitively, our algorithm uses UY to check that the human

always has some way to come to a stop to avoid an accident.

Remark IIL.9. Our approach ensures safety modulo fault
for any given UY, but having a set of backup actions
such as braking is necessary for the robot to not be overly
conservative.

c) Problem formulation: Our goal is to ensure that the
robot acts in a way that ensures safety for an infinite horizon
for any human that satisfies our assumptions.

Definition II1.10. A robot policy np : X — UR is safe
modulo fault for initial states Xy C X if for any human
policy mg : X — Upg satisfying Assumptions III.1, III.2,
II.6, & 1.8, and any zy € A), the trajectory zg,x1, ...
generated using ugr; = 7wr(z¢) and ug = 7 () is safe.

Finally, we cannot guarantee safety starting from an ar-
bitrary state zy. For instance, if the robot is about to crash

Algorithm 1 Model predictive shielding modulo fault.
procedure mr(x)
if ISREC(z, 7ig(x)) then
return 7z (x)
else
return uf,
end if
end procedure
procedure ISREC(x, uRr)
Xo + {I}
for ¢t € {0,...,k — 1} do
if X; € X then
return false

end if
Ugy < if t = 0 then {up} else {u%} end if
UH,t < Z/{IO{
X1 F(X,Urt,Uny)
end for

if X; C Ay then
return true
else
return false
end if
end procedure

into a wall, no action can ensure safety. We assume that the
initial states X[y are ones where we can guarantee safety.

Definition IIL11. A safe equilibrium state x € X satisfies
(1) € Xate, and (ii) x = f(x,u%,uH) for all uy € UY.

We denote the set of safe equilibrium states by Xeq. At
a state ¥ € Xy, the robot and human can together ensure
safety for an infinite horizon by taking actions u% and uy for
any uy € UY. In our driving example, Xeq contains states
where both agents are at rest (i.e., their velocity is zero).

Assumption IIL.12. We have X, C A,.

In other words, the system starts at a safe equilibrium state
where we can ensure safety for an infinite horizon.

IV. MODEL PREDICTIVE SHIELDING MODULO FAULT

We describe our algorithm for constructing a robot con-
troller 7r : X — Up that is safe modulo fault. Our approach
is based on shielding [13]—it takes as input an arbitrary
controller 7 : X — Ugr and modifies it to construct 7g.
Intuitively, mr overrides Tz when it cannot ensure it is safe.

The challenge is checking whether it is safe to use 7g.
Model predictive shielding (MPS) is an approach to shielding
that checks safety online based on the following [14], [15]:

Definition IV.1. Given hyperparameter k € N, (z,ug) €
X xUp is recoverable if for the robot action sequence i =
(ug, u%, e u%) € Zz{}%, for all human action sequences

g = (W0, UH 15 o Ut j—1) € (UF)F,

the trajectory (xg,x1,...,2) generated from zy = = using
actions Ug, iy satisfies (i) z; € Xy for all ¢ € {0, ..., k},
and (ii) zp € Xeq.

In other words, (z,up) is recoverable if, after using action
upR, the robot can subsequently ensure safety by using its
backup action u}, for any sequence of backup actions taken
by the human. We let Z,.. denote the set of recoverable pairs.

Now, our MPS modulo fault algorithm for computing
mr is shown in Algorithm 1. Here, ISREC checks whether
(z,7ig(x)) is recoverable. If so, 7 returns 7z (x); otherwise,
it returns the robot backup action u%.

Next, we describe how ISREC checks recoverability. The
challenge is that we need to guarantee safety with respect
to all human backup action sequences iz € (U%)*. To do
s0, ISREC conservatively overapproximates recoverability—
i.e., if it says that (z,upg) is recoverable, then it must be
recoverable, but it may say (z,ug) is not recoverable even
if it is. In particular, ISREC overapproximates the reachable
set of states after ¢ steps as a subset X; C X.

More precisely, the dynamics overapproximation F : 2% x
QUR w UH _y 9% {g 3 function from sets of states X C X,
sets of robot actions Ur C UR, and sets human action Uy C
Uy to sets of states F'(X,Ug,Ug) C 2%; it should satisfy

f(l‘,’U/R,UH)EF(X,UR,UH) (2)

for all z € X, ug € Ug, and ug € Ug. In other words,
F(X,Ug,Uy) should contain at least the states that can
be reached from » € X by taking actions up € Ugr and
uy € Ug. Intuitively, computing I’ in a way that this prop-
erty holds with equality may be computationally intractable,
but there exist tractable overapproximations—e.g., based on
polytopes [16], [17] or ellipsoids [18], [19]. In general,
this approach is known as abstract interpretation [20]. We
describe the overapproximation we use for our autonomous
driving example in Appendix B.?

Finally, ISREC checks whether (i) safety holds for every
state zy € X; (i.e., Xy C Xare), and (ii) every state xp € Xy,
is a safe equilibrium state (i.e., X; C Ayy). If both these
properties hold, then z is guaranteed to be recoverable. We
have the following guarantee (see Appendix A for a proof):

Theorem IV.2. Assuming (2) holds, wg is safe modulo fault.

V. EVALUATION

We have implemented our approach in a simulation for
three robotics tasks. For the robot, we consider an aggressive
controller with and without the shield as well as a cross
entropy method controller (CEM) that is designed to avoid
humans. For the human, we use both simulated humans based
on a social forces model of pedestrians [21], as well as real
humans interacting with the simulation via keyboard inputs.

Our goal is to understand how our approach can ensure
safety in aggressive driving scenarios. Thus, we focus on
settings where the human (either simulated or real) and
the robot must compete to reach their goals. We tune the

3https://obastani.github.io/docs/safehumancontrol.pdf

(a) merge (b) cross

(d) two lanes (e) turn (no stop)

(c) turn

Fig. 2. Visualizations of the different tasks along with the initial positions
and the goals for the robot and the human. The red box is the robot and
the blue box is the human.

parameters of our MPS modulo fault algorithm (i.e., the robot
backup action u% and the human backup action set UY) to be
as aggressive as possible while still ensuring safety on the
simulated humans. Furthermore, for our experiments with
real-world humans, we strongly encourage them to try and
reach their goal before the robot, albeit keeping safety as
the top priority. Then, our results are designed to answer the
following questions:
e Can MPS modulo fault can be used to ensure safety
with real and simulated humans?
o Can MPS modulo fault outperform a handcrafted MPC
based on CEM in terms of performance?

A. Experimental Setup

a) Robotics tasks: We consider three non-cooperative
robotics tasks (depicted in Figure 2). In the first task
(“merge”), there are two lanes that merge—i.e., the robot is
coming in from one lane and the humans from another; the
robot and human goals are to navigate the merge and reach
their goal. The second task (“cross”) has both the human
and the robot moving towards an intersection from different
directions—i.e., the robot is moving horizontally and the
human is moving vertically; the robot and human goals are
to get to their goal on the other side of the intersection.
The third task (“turn”) is an unprotected left turn—i.e., the
humans are driving without turning and the robot needs to
make a left turn that crosses the human path.

b) Safety property: We assume the robot and human
are each a rectangle; then, the safety property is that the the
robot and human rectangles should not intersect.

¢) Robot dynamics: The robot dynamics are the ones
in our running example—i.e., its state is (z,y,v,), where
(x,y) is position, v is velocity, and 6 is orientation, and its
actions are (a, @), where a is acceleration and ¢ is steering
angle. We assume |a| < amaxs |¢] < Pmax> and 0 < v < Oy

d) Simulated humans: For simulated humans, we use
the social force model [21], which includes potential forces
that cause each human to avoid the robot, other humans, and
walls, while trying to reach their goal.

e) Real humans: We also considered real human users
interacting with the simulation via keyboard. They control
the human using the up/down arrows to control acceleration
and the left/right arrows to control steering angle. We asked
the human users to prioritize safety first, but to drive aggres-
sively to try and reach their goal before the robot.

f) Controllers: We consider three controllers for the
robot: (i) an aggressive controller, (ii) a handcrafted MPC
controller based on the cross-entropy method (CEM) that is
manually designed to ensure safety without the shield, and
(iii) our MPS modulo fault algorithm used in conjunction
with the aggressive controller.

The first controller is an ‘“aggressive controller” that ig-
nores the humans and moves directly towards the goal as
fast as possible. For tasks where nonlinear trajectories are
required to reach the goal, we manually specify a sequence
of intermediate subgoals that the controller targets; once it
reaches each subgoal, it continues to the next one.

The second controller is a model-predictive controller
(MPC) that aims to avoid colliding with the human. We
use a planning algorithm based on the cross-entropy method
(CEM). Then, it chooses the action that attempts to optimize
its objective over the planning horizon. We use a handcrafted
objective that provides a positive reward for progressing to-
wards its goal and a large negative penalty for colliding with
the human. To predict collisions, it forecasts the behavior
of the human over the planning horizon by extrapolating
their position based on their current velocity (i.e., constant
velocity assumption). Finally, for the goal-reaching portion
of the objective, we use subgoals the same way we do for
the aggressive controller.

The third controller is our MPS modulo fault algorithm
used with the aggressive controller. The robot backup action
is u% = (0,—1) where ¢ = 0 is the steering angle and
a = —1 is the acceleration. The human backup action set is

Uy = {(aﬁ,a) | ¢ € [—110,110], a€ {—1,—;“.

That is, the human predicts that the robot may gradually
brake without changing direction, and the human considers
braking gradually (or hard) while steering up to some angle.

B. Experimental Results

We describe our experimental results. For simulated hu-
mans, all results shown are averaged over 100 simulations.
For real humans, the results are based on 18 users.

a) MPS modulo fault ensures safety for simulated hu-
mans: In Figure 3, we show both the fraction of unsafe
runs (left), and the time taken by the robot to reach the goal
(right), including the aggressive controller (red), the MPC
based on CEM (blue), and our shielded aggressive controller
(green). As can be seen, for the aggressive controller, the rate
of unsafe runs is very high since the robot ignores the human

mm cem W aggr WM shield

time

Fig. 3. Results with simulated humans, for the aggressive controller (red),
the CEM MPC (blue), and our shielded aggressive controller (green). Left:
Fraction of unsafe runs. Right: Time the robot takes to reach its goal in
seconds.

EEN cem WEN aggr MMM shield NN cem MW aggr WM shield

time

merge cross turn merge cross turn

Fig. 4. Results with real humans, for the aggressive controller (red), the
CEM MPC (blue), and our shielded aggressive policy (green). Left: Fraction
of unsafe runs. Right: Time the robot takes to reach its goal in seconds.

to get to its goal. Next, for the MPC based on CEM, the rate
of unsafety is lower but still not zero. However, the CEM
policy takes significantly longer to reach its goal compared
to the aggressive policy. Finally, our shielded aggressive
controller is always safe, yet only takes a small amount
of time longer to reach its goal compared to the aggressive
policy; in particular, it is significantly faster than the MPC.
These comparisons demonstrate that our approach greatly
improves safety without significantly reducing time to goal.

b) MPS modulo fault ensures safety for real humans:
Next, we had real human users interact with our simulated
robot via keyboard input. we show both the fraction of unsafe
runs (left), and the time taken by the robot to reach the goal
(right), including the aggressive controller (red), the MPC
based on CEM (blue), and our shielded aggressive controller
(green). As can be seen, for the aggressive controller, the
robot gets to its goal the fastest, but is frequently unsafe.
The MPC based on CEM is significantly safer; in this case,
it is somewhat safer than our shielded aggressive controller.
On the other hand, our shield controller reaches its goal
significantly faster than the MPC. As described above, we
set the shield parameters aggressively based on the simulated
humans to ensure it could reach its goal; in practice, we could
ensure safety by setting these parameters more conservatively
and by tuning them to the real human driver data.

c) Alternative robot backup actions: A key feature of
our approach is that we can flexibly design the robot backup
action to ensure safety. To demonstrate this flexibility, we
design an alternative backup action that pulls the robot over
to the shoulder of a highway. In contrast to the previous
backup policy, this one is time varying—i.e., the robot
steering depends on the current state. We test this backup
policy with simulated humans on the task in Figure 2 (d),
where there are two lanes on the highway and an on-ramp

= cem . cem B shield B shield
= aggr = aggr m shield++ mm shield++
mmm shield mmm shield
c
0.25 160 § o040
140 g 035 120
0.20 120 g 030 100
100 €
% 0.15 o < 0.25 g 50
80
2 g 5% S 60
S 010 60 4= 015
o 40
40 2 o010
0.05 °
20 % 005 20
0.00 0 #* 000 0
two_lanes two_lanes turn turn

Fig. 5. Results for alternative robot backup actions with simulated humans.
For the “pull over” backup action, we show the fraction of unsafe runs
(leftmost) and the time the robot takes to reach its goal in seconds (second
from the left), for the aggressive controller (red), the CEM MPC (blue), and
our shielded aggressive controller (green). For the “no-stop zone” backup
action, we show the number of stops in the intersection (second from the
right) and the time the robot takes to reach its goal in seconds (rightmost),
for the original (green, “shield”) and the new (brown, “shield++") shielded
controllers; both controllers are always safe.

that merges onto the highway. The human is on the on-
ramp and the robot is on the highway. To avoid collisions,
the robot can pull over to the right-most lane. Figure 5
shows the fraction of the unsafe runs (leftmost), and the time
the robot takes to reach its goal (second from left) for all
three controllers—aggressive (red), the MPC based on CEM
(blue), and our shielded aggressive controller with the pull
over backup policy (green). Our shielded controller is always
safe and is significantly faster than the MPC.

In addition, we can also design a robot backup action
that avoids stopping in the middle of an intersection and
blocking it, which is illegal in most places. To this end, we
modify the turn task to include a no-stop zone (shown in
Figure 2 (e)) where the robot is prohibited from stopping.
In this zone, the robot backup action does not come to a
stop immediately; instead, it drives through the zone until
it crosses the intersection, and only brakes once it has fully
cleared the intersection. The results for this experiment using
simulated humans are shown in Figure 5 (right). We compare
the original shielded controller (“shield”) that may stop in
the intersection with the new one that adheres to the no-
stop zone in Figure 2 (e) (“shield++”). In this case, both the
controllers were always safe; instead, we show the fraction
of runs where the robot stops in the intersection (second
from the right), and the time the robot takes to reach its goal
(rightmost). The new shielded controller takes slightly longer
to reach the goal but never stops in the intersection.

VI. CONCLUSION

We have proposed an approach for ensuring safety in
human-interactive robotics systems. We define a notion of
safety that models fault rather than human behaviors, and
propose our MPS modulo fault algorithm that ensures safety
for an arbitrary robot controller. We evaluate our approach
on both real and simulated humans. There are a number
of important directions for future work—e.g., designing
algorithms to infer the shield parameters or adapting our
approach to collaborative robotics settings.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]
[21]

REFERENCES

K. Strabala, M. K. Lee, A. Dragan, J. Forlizzi, S. S. Srinivasa, M. Cak-
mak, and V. Micelli, “Toward seamless human-robot handovers,”
Journal of Human-Robot Interaction, vol. 2, no. 1, pp. 112-132, 2013.
A. D. Dragan, K. C. Lee, and S. S. Srinivasa, “Legibility and
predictability of robot motion,” in 2013 8th ACM/IEEE International
Conference on Human-Robot Interaction (HRI). 1EEE, 2013, pp.
301-308.

M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Et-
tinger, D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke, et al., “Junior:
The stanford entry in the urban challenge,” Journal of field Robotics,
vol. 25, no. 9, pp. 569-597, 2008.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel,
J. Z. Kolter, D. Langer, O. Pink, V. Pratt, et al., “Towards fully
autonomous driving: Systems and algorithms,” in Intelligent Vehicles
Symposium (IV), 2011 IEEE. 1EEE, 2011, pp. 163-168.

D. Sadigh, S. Sastry, S. A. Seshia, and A. D. Dragan, “Planning for
autonomous cars that leverage effects on human actions.” in Robotics:
Science and Systems, vol. 2. Ann Arbor, MI, USA, 2016.

D. Sadigh, S. S. Sastry, S. A. Seshia, and A. Dragan, “Information
gathering actions over human internal state,” in 20/6 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2016, pp. 66-73.

K. Eder, C. Harper, and U. Leonards, “Towards the safety of human-
in-the-loop robotics: Challenges and opportunities for safety assurance
of robotic co-workers’,” in The 23rd IEEE International Symposium
on Robot and Human Interactive Communication. 1EEE, 2014, pp.
660—665.

J. FE. Fisac, A. Bajcsy, S. L. Herbert, D. Fridovich-Keil, S. Wang, C. J.
Tomlin, and A. D. Dragan, “Probabilistically safe robot planning with
confidence-based human predictions,” in RSS, 2018.

D. Sadigh, S. S. Sastry, S. A. Seshia, and U. Berkeley, “Verifying
robustness of human-aware autonomous cars,” IFAC-PapersOnlLine,
vol. 51, no. 34, pp. 131-138, 2019.

S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a for-
mal model of safe and scalable self-driving cars,” arXiv preprint
arXiv:1708.06374, 2017.

F. Bastani, O. Bastani, S. He, A. Balasingam, Z. Jiang, R. Mittal,
M. Alizadeh, H. Balakrishnan, T. Kraska, and S. Madden, “Skyquery:
Optimizing video queries over uavs,” 2020. [Online]. Available:
https://favyen.com/skyquery.pdf

A. K. Akametalu, J. F. Fisac, J. H. Gillula, S. Kaynama, M. N.
Zeilinger, and C. J. Tomlin, “Reachability-based safe learning with
gaussian processes,” in 53rd IEEE Conference on Decision and
Control. 1EEE, 2014, pp. 1424-1431.

M. Alshiekh, R. Bloem, R. Ehlers, B. Konighofer, S. Niekum, and
U. Topcu, “Safe reinforcement learning via shielding,” in Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

K. P. Wabersich and M. N. Zeilinger, “Linear model predictive safety
certification for learning-based control,” in 2018 IEEE Conference on
Decision and Control (CDC). 1EEE, 2018, pp. 7130-7135.

S. Li and O. Bastani, “Robust model predictive shielding for safe
reinforcement learning with stochastic dynamics,” in /CRA, 2019.
M. Althoff, O. Stursberg, and M. Buss, “Computing reachable sets
of hybrid systems using a combination of zonotopes and polytopes,”
Nonlinear analysis: hybrid systems, vol. 4, no. 2, pp. 233-249, 2010.
S. Sadraddini and R. Tedrake, “Linear encodings for polytope con-
tainment problems,” arXiv preprint arXiv:1903.05214, 2019.

L. Asselborn, D. Gross, and O. Stursberg, “Control of uncertain
nonlinear systems using ellipsoidal reachability calculus,” IFAC Pro-
ceedings Volumes, vol. 46, no. 23, pp. 50-55, 2013.

T. F. Filippova, “Ellipsoidal estimates of reachable sets for control
systems with nonlinear terms,” IFAC-PapersOnLine, vol. 50, no. 1,
pp. 15355-15360, 2017.

P. Cousot, “Abstract interpretation,” in In POPL. Citeseer, 1977.

D. Helbing and P. Molnar, “Social force model for pedestrian dynam-
ics,” Physical review E, vol. 51, no. 5, p. 4282, 1995.

