
Synthesis of Domain Specific CNF Encoders for
Bit-Vector Solvers

Jeevana Priya Inala, Rohit Singh, and Armando Solar-Lezama

Massachusetts Institute of Technology, Cambridge, MA, USA
{jinala,rohitsingh,asolar}@csail.mit.edu

The theory of bit-vectors in SMT solvers is very important for many applica-
tions due to its ability to faithfully model the behavior of machine instructions.
A crucial step in solving bit-vector formulas is the translation from high-level bit-
vector terms down to low-level boolean formulas that can be efficiently mapped
to CNF clauses and fed into a SAT solver. In this paper, we demonstrate how
a combination of program synthesis and machine learning technology can be
used to automatically generate code to perform this translation in a way that is
tailored to particular problem domains. Using this technique, the paper shows
that we can improve upon the basic encoding strategy used by CVC4 (a state of
the art SMT solver) and automatically generate variants of the solver tailored
to different domains of problems represented in the bit-vector benchmark suite
from SMT-COMP 2015.

1 Introduction

SMT solvers are at the heart of a number of software engineering tools ranging
from automatic test generators [48,43,41] to deterministic replay tools [16], just to
name two applications among many others [11,25,52]. Of particular importance to
these applications is the theory of bit-vectors, which is widely used [17,26,42,46]
because of its ability to faithfully represent the full range of machine arithmetic.

One of the most important steps in a bit-vector solver is the mapping of
high-level bit-vector terms down to low-level CNF clauses that can be fed to a SAT
solver—a process often referred to as bit-blasting. One approach to bit-blasting is
to use the known efficient encodings for simpler boolean terms (such as AND or
XOR) and compose them to generate CNF clauses for complex terms [49]. This
approach can have a huge impact on the performance of the solver [39,38], but
generally, it relies on having optimal encodings for the simpler terms, and even
then it does not guarantee any kind of optimality of the overall encoding.

In this paper, we propose OptCNF, a new approach to automatically generate
the code that converts high-level bit-vector terms into low-level CNF clauses.
In addition to the obvious benefits of having the code automatically generated
instead of having to write it by hand, OptCNF has three novel aspects that
together significantly improve the quality of the overall encoding: (a) OptCNF
uses synthesis technology to automatically generate efficient encodings from high-
level formulas to CNF (b) OptCNF relies on auto-tuning to choose encodings
that produce the best results for problems from a given domain. (c) OptCNF

2 J. P. Inala et al.

identifies commonly occurring clusters of terms in a given domain and focuses on
finding optimal encodings for such clusters.

The synthesis of encodings balances optimality among three criteria: number
of clauses, number of variables and propagation completeness. The propagation
completeness requirement has been proposed as an important criterion in order
for the encoded constraints to solve efficiently in the SAT solver [10]. Modern SAT
solvers rely heavily on unit propagation to infer the values of variables without
having to search for them. Propagation completeness means that if a given partial
assignment implies that another unassigned variable should have a particular value,
then the solver should be able to discover this value through unit propagation alone.
Prior work has demonstrated the synthesis of propagation complete encodings
for terms involving a small number of variables [12]. OptCNF, however, is more
flexible and is able to produce propagation complete encodings even for relatively
large bit-vector terms by taking advantage of high-level hypothesis about the
structure of the encoding (See Section 2).

In practice, however, propagation completeness does not always improve the
performance of an encoding. For certain classes of problems, for example, the
additional unit propagations caused by a propagation complete encoding can
actually slow the solver down. Similarly, there is often a trade-off between the
number of auxiliary variables and the number of clauses used by an encoding;
for some problems having more variables but fewer clauses can be better, but
for other problems, having fewer variables at the expense of more clauses can
be better. In order to cope with this variability, OptCNF uses auto-tuning to
make choices about which encodings are best for problems from a particular
domain. Prior work has demonstrated the value of tuning solver parameters in
order to achieve optimal performance for problems from particular domains [32],
but ours is the first work we know of where auto-tuning is used to make high-level
decisions about how to encode particular terms (see Section 5).

Finally, OptCNF is able to better leverage its ability to synthesize optimal
encodings by focusing on larger clusters of terms, as opposed to focusing on
individual bit-vector operations independently. Given a corpus of sample problems
from a domain, OptCNF is able to identify common recurring patterns in the
formulas from those problems and then generate specialized encodings for those
patterns.

Figure 1 shows how these ideas come together as OptCNF. The input
to OptCNF is a collection of formulas represented as DAGs (Directed Acyclic
Graphs) extracted from a set of benchmarks from a given problem domain.
OptCNF samples these DAGs to extract representative clusters of terms—what
the figure refers to as patterns. OptCNF then leverages Sketch synthesis
system [45] to synthesize “optimal” encodings for those patterns and generates
C++ code for the encodings that can be linked with a modified version of CVC4
solver [6]. The auto-generated code contains a set of switches to turn different
encodings on or off. Finally, the auto-tuner searches for the optimal configuration
of those switches in order to produce the best performing domain-specific version
of CVC4.

Synthesis of CNF Encoders for Bit-Vector Solvers 3

Our evaluation shows that the resulting domain-specific encodings are able
to significantly improve the performance of CVC4 when run in eager bit-blasting
mode. Using OptCNF, we generated a separate solver for 7 different domains
represented in the quantifier-free bit-vector benchmarks from the SMT-COMP 15
benchmark suite [7]; using these specialized solvers on their respective domains,
we were able to solve 83 problems from the test set (see Section 6) that CVC4
could not solve.

Pattern
Finding
(Sampling)

Synthesis
of Encoders

(Sketch)

Code
Generation
(Compilation)

Auto-tuning
(Machine

Learning)

Corpus of Bench-

mark DAGs

Optimal set

of Encoders

Patterns Encoders

solver

Augmented

Fig. 1: OptCNF: System Overview

2 Synthesis of Encoders

Previous work [12] has attacked the problem of generating optimal propagation
complete encodings for a given term by starting with an initial encoding and then
exhaustively checking for violations of propagation completeness and incrementally
adding more clauses to fix these violations. The resulting propagation complete
encoding is then minimized to produce an equivalent but smaller encoding. Our
approach to generating encodings is quite different because it relies on program
synthesis technology, allowing us to symbolically search for an encoding based on
a formal specification. An important advantage of our approach is flexibility. In
particular, it allows us to generate encoders that generate encodings at solver
run-time from terms that have parameters that will only be known at run-time
(for example, the bit-width for a bit-vector operation).

OptCNF frames the task of generating these encoders as a Syntax Guided
Synthesis problem (SyGuS) [2]. A SyGuS problem is a combination of a template
or grammar that represents the space of the candidate solutions and a specification
that constrains the solution. The goal of a SyGuS solver is to find a candidate
in the template that satisfies the specification. The two components, template
and specification, are very crucial in determining the scalability of the problem.
Here, we first describe the templates that represent the space of CNF encoders
for booleans and bit-vector terms. Then, we formalize the correctness and the
optimality specification that constraints the template. Finally, we describe an
efficient but equivalent specification that makes the SyGus synthesis problem
more scalable.

2.1 CNF Encoders and Templates

The encoders generated by OptCNF work in two passes. Given a formula to
be encoded into SAT, OptCNF first identifies terms for which it has learned to
generate CNF constraints and replaces them by special placeholder operators Ni.
Then, the pass that would normally have generated low-level constraints from

4 J. P. Inala et al.

the bit-vector terms is extended to recognize these placeholder operators and
generate the specialized constraints for them.

The pass that identifies the known terms, and the scaffolding that iterates
through the different operators in a DAG representation of the formula and
identifies the placeholder nodes are all produced using relatively straightforward
code-generation techniques. The synthesis problem focuses on the code that
executes when one of these placeholder nodes is found. This is the encoder code
that generates the CNF encoding for a previously identified term T .

t ≡ and(x, or(y, z)) t ≡ bvANDN (x, bvORN (y, z)) t ≡ bvEQN (x, y)

clause({x,~t})
clause({~x,~y,t})
clause({~x,~z,t})
clause({y,z,~t})

for i from 1 to N:
clause({x[i],~t[i]})
clause({~x[i],~y[i],t[i]})
clause({~x[i],~z[i],t[i]})
clause({y[i],z[i],~t[i]})

t1 = true
for i from 1 to N:
t2 = i == N ? t : newVar
clause({x[i],y[i],~t1,t2})
clause({x[i],~y[i],~t2})
clause({~x[i],y[i],~t2})
clause({~x[i],~y[i],~t1,t2})
clause({t1,~t2})
t1 = t2

Fig. 2: Encoders for three different kinds of terms

The term T for which OptCNF is generating an encoding is known at
synthesis time, so OptCNF can choose a template or a set of templates for this
code depending on the properties of T . Figure 2 illustrates the three different kind
of terms and the encodings that represent the terms. If T is not parametric—for
example if it is just a collection of boolean operators—then the encoder just needs
to generate a fixed set of clauses corresponding to the constraint represented by
T , and the template will reflect that. On the other hand, many terms will be
parameterized by bit-widths, so the encoder will have to produce clauses in one
or more loops.

For bit-vector terms, which are parametric on the bit-width of their different
operators, we differentiate between two different kinds – bit-parallel and non
bit-parallel. Bit-parallel terms are those that are composed entirely of operations,
such as bitwise AND, OR or XOR, where there is no dependency from one column
of the bit-vector to another. For these kinds of terms, generating the encoding for
a single column and then enumerating them over all columns will still preserve
optimality. Hence, it is sufficient to just synthesize the encoding for the boolean
term that represents operations in a single column. This is, however, not the case
for all bit-vector terms.

Terms involving bitwise PLUS, for example, cannot be dealt in the same way
because there are dependencies that flow from one column to another. These
operations can still be represented as a loop of encodings, but there will be
auxiliary variables that are threaded from one iteration of the loop to another.
Figure 3 shows one such template for a bit-vector formula involving two bit-vector
inputs of size N (taken as a parameter) and outputs another bit-vector of size
N. For each column in the bit-vectors, the template calls encode_column which is
another template for explicit encodings, but this template can be instantiated

Synthesis of CNF Encoders for Bit-Vector Solvers 5

with variables specific to loop iteration. This template has one auxiliary variable
per column. Every column has an incoming auxiliary variable (a constant for
the first column) which carries information from the previous columns and an
outgoing auxiliary variable that carries information forward. This same template
represents multiple formulas depending on how the encode_column template is
instantiated. For example, this same template is used to generate encodings for
both bitwise PLUS and bitwise MINUS operations.

The templates in OptCNF are all written in the Sketch language, which
allows us to leverage the Sketch synthesis engine for the synthesis problem. A
template in Sketch is a piece of code with integer and boolean holes to represent
the set of candidate solutions that the synthesizer should consider. The standard
template for an encoding is a list of clauses with holes representing the number
of clauses, and the length and the literals present in each clause. We significantly
reduce the size of the search space by enforcing an order among the literals in
each clause and among clauses themselves and thus, eliminating symmetries. This
canonical representation captures any general CNF encoding, but it does not
impose any structure on the clauses. We found that this model is scalable enough
for boolean formulas that expand into a small number of CNF clauses (about 20
to 30). But, in order to deal with bigger formulas like bit-vector operations, we
need to represent the search space using loops to capture the structure.

OptCNF has a library of templates for different kinds of input types, output
types and number of auxiliary variables per column. When running Sketch on a
term, OptCNF runs different instances of Sketch with a different template and
chooses the one that provides the best encoding (based on heuristics like number
of clauses and number of auxiliary variables). Due to the scalability limits of
Sketch, OptCNF can currently only synthesize encodings for non bit-parallel
terms that have at most two input bit-vectors, at most two auxiliary variables
per column and no nested loops in the template.

Lit [N] encode(Lit [N] mval, Lit [N] fval) {
Lit [N] out = newVar(N) /∗ creates an array of out literals ∗/
Lit [N] aux = newVar(N) /∗ creates an array of auxiliary literals ∗/
/∗ Specialize the first column ∗/
encode_column(mval[1], fval [1], out [1], const?, aux[1])
for i in 2 to N:
encode_column(mval[i], fval [i], out[i] aux[i−1], aux[i])

return out
}

Fig. 3: Template for a bitwise operation on two bit-vectors (with one auxiliary
variable per column)

6 J. P. Inala et al.

2.2 Problem formulation

In addition to the template, the other important component of a SyGus problem is
the specification. Unlike the templates, which are very different for parameterized
and non-parameterized terms, the specifications for both are actually very similar;
the only difference is that for parameterized terms, the parameters must be
threaded through to all the relevant predicates. Therefore, the rest of the section
will omit these bit-width parameters in the interest of clarity.

A term T (in) can be represented by a predicate P (in, out) defined as
P (in, out)⇔ out = T (in). For notational convenience, we will just write P (x),
where x is understood to be a vector containing both the input and the output
variables. The goal is to generate an alternative representation of the predicate
in terms of CNF clauses C(x).

Definition 1 (Correctness Specification). A set of CNF clauses “represents”
a boolean predicate P iff P (x)⇔ C(x).

In addition to the correctness specification, however, we want to ensure
propagation completeness which needs to be defined in terms of the behavior
of the encoding under partial assignments. A partial assignment σ maps every
variable to one of {true, false, >} where > indicates that the value has not
been assigned by the solver and could be true or false. A partial assignment can
be understood as the set of all complete assignments that are consistent with
the partial assignment. Therefore, it is standard to define a partial order among
partial assignments as:

σ w σ′ ⇐⇒ ∀i. σ(xi) 6= > ⇒ σ′(xi) = σ(xi)

We generalize the predicate to be a function from partial assignments to the
set {true, false, >}, and define P (σ) = > for any partial assignment where some
variable xi is set to >.
Definition 2. We define the following predicates on partial assignments:

complete(σ) ≡ ∀i. σ(xi) 6= >
satisfiable(σ, P) ≡ ∃σ′ v σ. P (σ′) = true

unsatisfiable(σ, P) ≡ ∀σ′ v σ. P (σ′) 6= true
forces(σ, P, xi, b) ≡ (σ′ = extend(σ, xi,¬b)) ⇒ unsatisfiable(σ′, P)

maypropagate(σ, P) ≡ ∃i, b. forces(σ, P, xi, b)

Where extend(σ, xi, b) is defined as extending an assignment with σ(xi) = > to
one where variable xi has value b. The predicate maypropagate(σ, P) indicates that
the partial assignment σ forces the value of some currently unassigned variable.

Lemma 1. The forces() predicate has the following property.

forces(σ, P, x̂i, b̂) ∧ σ′ = extend(σ, x̂i, b̂)
⇒ ∀(xi,b) 6=(x̂i,b̂)

forces(σ, P, xi, b)⇒ forces(σ′, P, xi, b)

This means that if P and a partial assignment σ force x̂i to take a particular
value b̂, then any other variable that was also forced by σ and P will also be forced
after extending the assignment with σ(x̂i) = b̂.

Synthesis of CNF Encoders for Bit-Vector Solvers 7

Lemma 2. Another important property of forces() is the following.

satisfiable(σ, P) ∧ forces(σ, P, x̂i, b̂) ∧ σ′ = extend(σ, x̂i, b̂)
⇒ satisfiable(σ′, P)

This means that if P and a partial assignment σ force x̂i to take a particular
value, then after extending the assignment with σ(x̂i) = b̂, the new assignment is
still satisfiable.

A clause c can be applied to a partial assignment as well, resulting in a value
c(σ) ∈ {true, false, µ,>}. A clause is unit (µ) if one of the literals in the clause
has an unknown value and all others are false. A CNF encoding is a collection
of clauses C. C(σ) can either be true if c(σ) = true for all the clauses, false if
c(σ) = false for at least one of the clauses, µ if σ makes at least one clause unit
(and σ does not falsify any others), or > if none of the above. Thus, the result
of applying C to a partial assignment helps identify the case when at least one
of the clauses is a unit clause, and it is, therefore, possible to propagate further
assignments. This is useful in describing unit propagation.

Definition 3 (UP). The function UP captures the unit propagation in SAT
solvers. We say that C propagates σ to UP(C, σ) under unit propagation according
to the following rules:
1. if C(σ) 6= µ, then UP(C, σ) = σ .
2. else,C(σ) has a unit clause. If the unit clause forces σ(xi) = b, then UP(C, σ) =
UP(C, σ′) where σ′ = extend(σ, xi, b).

The definitions above give rise to an important lemma.

Lemma 3. A set of CNF clauses C “represents” a boolean predicate P iff it
satisfies the following two conditions:

1. satisfiable(σ, P) ⇒ C(UP(C, σ)) 6= false
2. unsatisfiable(σ, P) ⇒ C(UP(C, σ)) 6= true (2.1)

i.e. if an assignment can be extended to a satisfiable assignment for P , then
unit propagation should not lead to a contradiction. And similarly, if an assignment
(possibly partial) already contradicts P , then unit propagation should not lead to
a satisfiable assignment for the CNF clauses.

With the definitions above, we can now state the requirement for propagation
completeness.

Definition 4 (Propagation Completeness). C is a set of propagation com-
plete CNF clauses representing P if C “represents” P and

∀σ. satisfiable(σ, P)
⇒ ∀ xi, bi. (forces(σ, P, xi, bi)⇒ UP(C, σ) v extend(σ, xi, bi))

(2.2)

In other words, if a partial assignment can be completed into a satisfying assign-
ment, and if there are unassigned variables xi that if set to ¬bi would make the
partial assignment unsatisfiable, then unit propagation must set all such xi to bi.

8 J. P. Inala et al.

2.3 Synthesis-friendly propagation completeness

The above definition captures the notion of propagation complete encodings, but
it is unsuitable as a specification for synthesis because the recursive definition
of UP essentially defines a small SAT solver, making it too complex for a state
of the art synthesizer. Instead, OptCNF relies on an equivalent but simpler
specification that does not require implementing a SAT solver. The idea is that
instead of thinking in terms of full unit propagation, we now verify propagation
only one step at a time. Specifically, the claim is that the following three rules
guarantee propagation completeness.

1.∀σ. satisfiable(σ, P) ⇒ C(σ) 6= false
2.∀σ. maypropagate(σ, P) ⇒ C(σ) = µ
3.∀σ. unsatisfiable(σ, P) ⇒ C(σ) = false ∨ C(σ) = µ

(2.3)

Theorem 1. Formula (2.3) ⇐⇒ Correctness ∧ Formula (2.2)

Proof: Formula (2.3) ⇒ Correctness
This follows directly from Formula (2.3), because when σ is complete, satisfiable(σ,
P) implies P (σ) = true and similarly, unsatisfiable(σ, P) implies P (σ) = false.

Proof: Formula (2.3) ⇒ Formula (2.2)
This can be proved by induction on the number of times σ can be extended
before it fails maypropagate(σ, P). For the base case, ¬maypropagate(σ, P), (2.2)
is vacuously satisfied because forces() fails for all variables. For the inductive
case, maypropagate(σ, P), C(σ) = µ (by 2.3-2). Let σ′ = extend(σ, x̂i, b̂) which is
obtained by propagating the unit clause in C(σ). Note that UP(C, σ) = UP(C, σ′)
by Definition 3. Applying Lemma 2 tells us that satisfiable(σ′, P), so applying
the inductive hypothesis together with Lemma 1, we can prove the inductive
case.

Proof: Correctness ∧ Formula (2.2) ⇒ Formula (2.3)
First, we use the fact that correctness is equivalent to Formula (2.1). If satisfiable(σ,
P), then C(UP(C, σ)) 6= false and this implies C(σ) 6= false.
If σ can be propagated, then ∃xi, b. forces(σ, P, xi, b). And hence, UP(C, σ) 6= σ
and this implies C(σ) = µ.

If unsatisfiable(σ, P), then let σ′ A σ be the maximal satisfying subset of σ
i.e. σ′ is satisfiable and ∀σ′ A σ′′ A σ. σ′′ is unsatisfiable. Then, C(σ′) = µ and
since σ′ is maximal subset, C(σ) = false ∨ C(σ) = µ.

2.4 Introducing Auxiliary Variables

In some cases, the encoding C will involve auxiliary variables ti in addition to
the variables xi, in such cases, we write C((x, t)). In that case, the correctness
specification must be generalized to

∀x. P (x) ⇐⇒ ∃t. C((x, t))

Synthesis of CNF Encoders for Bit-Vector Solvers 9

Similarly, the conditions in Formula (2.3) generalize to the conditions below.

1.∀σ. satisfiable(σ, P) ⇒ ∃σt. C((σ, σt)) 6= false
2.∀σ, σt. maypropagate(σ, P) ∧ C((σ, σt)) 6= false ⇒ C((σ, σt)) = µ
3.∀σ, σt. unsatisfiable(σ, P) ⇒ C((σ, σt)) = false ∨ C((σ, σt)) = µ

(2.4)

The proof for this has a similar structure to the previous proof. Basically, once
we establish the first rule above, auxiliary variables can be treated just as the
other variables in P . It should be noted that this specification is more complex
than Formula (2.3) because of the existential quantifier in the R.H.S of rule 1.
The CEGIS algorithm employed by solvers like Sketch is designed to deal with
the outer universal quantifiers, but cannot handle inner existential quantifiers.
Hence, this existential quantifier should be translated into an explicit loop over
all auxiliary assignments, which makes the synthesis problem hard. In practice,
we found that this overhead is not significant when the number of auxiliaries
used in the encodings is low.

2.5 Clause Minimization

Another important optimality criterion for the encodings is the clause minimiza-
tion. If there are two propagation complete encodings having different number of
clauses representing the same predicate, then the encoding with the lower number
of clauses is preferred. OptCNF relies on binary search to find an encoding
with an optimal number of clauses. This requires solving a logarithmic number
of synthesis problems to generate a single encoding, which has proven to be
reasonably efficient in practice.

2.6 Guarantees of the synthesized solution

When the formula is a boolean term or a bit-parallel term, Sketch performs full
verification and hence, the output is guaranteed to be correct and propagation
complete. When the input formula is a non bit-parallel bit-vector term, OptCNF
does bounded verification on the size of the bit-width parameters. The correctness
specification is easier to verify than the propagation completeness requirement,
so OptCNF allows the user to separately specify the checking bounds for both
specifications. In our experiments, we check correctness for all inputs up to 6-bits
and propagation completeness for up to 3-bits. Beyond these bounds, OptCNF
relies on verifying the output (sat/unsat) of the solver on all the benchmarks used
in our experiments to provide confidence on the correctness of the synthesized
encodings. We did not encounter a single instance where OptCNF resulted in
an incorrect output.

3 Pattern Finding

In this phase, we identify commonly occurring patterns in the formulas arising
from a given domain. For this, we build on prior work on representative sampling

10 J. P. Inala et al.

from DAG-based representations of formulas ([44]). The original sampling work on
which we build takes as input a size k and produces a representative sample of all
sub-terms of size k that appear in the corpus. When k = 1, for example, the process
will return a sample of all the operations that appear in the corpus; the frequency
with which a given operation appears in the sample will be approximately the
same as the frequency with which it appears in the corpus. When sampling with
higher values of k, the sampling process takes into account the fact that some
operations are commutative, but not others.

Given a corpus, OptCNF collects representative samples for values of k ≤ 5
for bit-parallel formulas and k ≤ 3 for non bit-parallel formulas. The upper
bounds are determined by the capabilities of our encoding synthesis algorithm,
which is unable to generate encodings for larger terms.

4 Encoder Code Generation

OptCNF uses CVC4 as the target solver and generates the code for implementing
the synthesized encoders in two phases: (1) Pattern matching in the decreasing
order of the pattern size and (2) Extending the existing encoding phase in CVC4.
OptCNF generates code for a straight-forward pattern matching phase while
handling symmetries by enumerating all equivalent permutations of patterns with
commutative operations. The generated code for augmenting CVC4 implements
the synthesized encoder for each matched pattern and provides a command-line
interface for switching them on or off individually.

However, there is scope for optimizing this code by implementing: (1) fast
pattern matching that reuses common terms in the matched patterns (2) caching
and reusing newly generated literals in the encoding phase (3) reduction in
number of function calls in the generated code and (4) simplifying the encodings
for patterns with constant inputs. Even without these optimizations, we are able
to show significant improvement in CVC4’s performance on certain domains
(Section 6).

5 Auto-tuning Encoders

For each domain, we use OpenTuner [3] to auto-tune the set of encoders (one
for each pattern) obtained from the synthesis phase according to a performance
metric based on the number of benchmark problems solved and the time taken
to solve them. The evaluation function (fopt) to be optimized takes as input a
set of encoders to be used and returns a real number. The number is the sum of
all the times taken by the benchmarks to solve; for any benchmarks that time
out, their time is counted as the timeout bound times two. The auto-tuner tries
to minimize this value by trying out various subsets of encoders provided to it
as input while learning a model of the dependence of fopt on the selection of
encoders.

Synthesis of CNF Encoders for Bit-Vector Solvers 11

6 Evaluation

We extend CVC4 solver (ranked 2 in the bit-vector category of SMT-COMP
2015 [8]) with synthesized encoders for each domain and evaluate the impact
on its performance. Each generated solver is evaluated on the non-incremental
quantifier free bit-vector (QF_BV) benchmark suite from SMT-COMP 2015. This
benchmark suite consists of 26320 benchmarks that are grouped into 36 sub-
categories. In most cases, these sub-categories represent a particular domain of
problems–for example, the log− slicing category represents benchmarks that verify
bit-vector translation from operations like addition and multiplication to a set of
base operations. Some other sub-categories like asp are themselves a collection
of benchmarks from multiple different sources. We treat these sub-categories as
domains irrespective of whether they really represent a single domain.

6.1 Experimental Setup

OptCNF generates a domain specific solver in four stages:

1. Randomly sampling 10% of the benchmarks from the domain and running
CVC4 to collect all the formulas just before they are encoded to SAT.

2. Pattern finding (Section 3) on these formulas and filtering the terms based
on capabilities of the synthesis phase of OptCNF.

3. Translation of each term to multiple SyGus problems one for each possible
template that is suitable for the type and the size of the term. For problems
involving non bit-parallel terms, OptCNF uses Sketch with 4 cores to
parallelize the clause minimization algorithm (Section 2.5). All other problems
use a single core. Each problem is also given a timeout of 3 hours.

4. Augmenting CVC4 code with the generated encoders (Section 4) and auto-
tuning to find a subset of encoders that improve the performance (Section 5).

Different parts of OptCNF system were run on different machines. Pattern
finding and synthesis of encoders were run on a machine with forty 2.4 GHz Intel
Xeon processors and 96 GB RAM. For auto-tuning, we used a private cluster
running OpenStack with parallelism of 150 on 75 virtual machines each with 4
cores and 8GB RAM of processing power. Finally, the performance experiment
evaluating the solvers on QF_BV benchmarks was run on the StarExec [47] cluster
infrastructure with a timeout of 900 seconds and a memory limit of 200 GB
(similar to the resources used for the SMT competition).

6.2 Domains and Benchmarks

We generate a total of 7 domain-specific solvers and a general solver which is
obtained by using the entire QF_BV benchmark suite for pattern finding and
synthesis. For the general solver, we enable all the generated encoders and do not
auto-tune them. The 7 domains are chosen from the 36 categories in QF_BV.
We chose these categories based on the criteria that the number of benchmarks

12 J. P. Inala et al.

in the domain is at least 20 and the average run-time is significant enough to
see an improvement. The solvers for these domains are referred by their category
name.

6.3 Experiments

We focus on the following questions: (1) Can OptCNF generate domain-specific
solvers in reasonable amount of time? (2) How does the performance of the
domain-specific optimal solvers generated by OptCNF compare to CVC4? (3)
How domain-specific are the encoders generated by OptCNF?

Time taken to generate optimal encoders Table 1 shows the number of
generated (gen) and selected (sel) encoders (selected after auto-tuning, differ-
entiated by the type of patterns), and, the total time taken to synthesize these
encoders (both cpu time and clock time). In addition to this, Pattern Finding was
run for an hour per domain and Auto-tuning was run for 7.5 hours per domain.
In total, OptCNF was able to generate domain-specific encoders in 10−22 hours
per domain which is a reasonable amount of time as compared to a software
engineer implementing and debugging encoders in a solver.

Table 1: Encoder statistics and Sketch running times
Domain # boolean # bit # non bit Total Synthesis time

parallel parallel patterns
gen sel gen sel gen sel gen sel (cpu hrs) (clock hrs)

general 336 336 334 334 12 12 682 682 497 17
asp 29 22 0 0 4 3 33 25 8 2
brummayerbiere2 66 0 12 7 2 2 80 9 16 2
brummayerbiere3 35 0 13 3 5 3 53 6 15 3
bruttomesso 21 4 1 0 1 0 23 4 5 2
float 272 17 294 18 3 0 569 35 360 13
log-slicing 19 0 86 60 5 5 110 65 49 4
mcm 13 3 2 1 4 1 19 5 7 2

Impact of domain-specific solvers: With the exception of the general solver,
all the other solvers are auto-tuned to select a subset of the generated encodings
that improves the performance. For all domains except asp and bruttomesso, the
training set for auto-tuning contains 50% benchmarks chosen randomly from
the domain. For these domains, we perform 2-fold cross-validation i.e. we swap
training/test sets and run auto-tuning again. For asp and bruttomesso, the training
set contains only 20% benchmarks due to resource constraints for auto-tuning
resulting from them having a large number of benchmarks. For these two domains,
we run auto-tuning again for approximating cross-validation with another disjoint
training set that contains 20% benchmarks form the domain.

Synthesis of CNF Encoders for Bit-Vector Solvers 13

We compare the performance of the domain-specific solvers (auto-tuned on
the first training set) with the general solver and CVC4 in Table 2. Only the
benchmarks from the first test set are considered for evaluation in the table. The
best-performing solver for every domain is marked as bold. The auto-tuned solver
solves 83 benchmarks more than CVC4 in total. For all domains, the domain-
specific solvers outperform CVC4. The domain-specific solvers auto-tuned on the
second training set for each domain also outperform CVC4 and solve 73 more
benchmarks on their corresponding test sets (the details are omitted due to lack
of space).

Table 2 also presents the performance of the Boolector solver (the best
bit-vector solver in SMT-COMP’15) on the same test set benchmarks for refer-
ence. CVC4 is already better than Boolector on two domains (mcm, float) and
OptCNF improves it slightly further. On one domain (log− slicing), CVC4 is
notably worse than Boolector, but OptCNF makes it outperform Boolector. In
addition, OptCNF significantly bridges the gap between CVC4 and Boolector
on the mcm domain.

Table 2: Performance comparison: Domain-specific, general and CVC4 solvers on
7 categories of QF_BV benchmark suite (first training set)

CVC4 general Domain-Specific Boolector
Benchmark category solved time (s) solved time (s) solved time (s) solved time (s)
asp (365) 240 32652.8 238 33291.8 288 34971.5 308 29821.6
brummayerbiere2 (33) 28 1202.8 24 1653.2 29 1691.0 33 1371.2
brummayerbiere3 (40) 23 1165.2 23 2239.4 24 1272.1 32 1760.7
bruttomesso (676) 623 32880.8 604 35808.6 623 32840.2 774 8461.1
float (62) 59 4015.9 55 3599.6 60 4395.5 58 6152.9
log-slicing (79) 33 12636.1 57 17290.6 62 21115.4 53 9534.8
mcm (61) 40 3933.9 38 3355.0 43 4193.0 39 8333.1

1046 88487.5 1039 97238.2 1129 100479.8 1297 65435.4

The run-times for benchmarks from domains where we did not perform auto-
tuning can be found in the appendix. The general solver performs better on
some domains but not the others, and, slightly worse than CVC4 overall. In
all cases where we performed auto-tuning, the domain-specific solvers beat the
general solver (Table 2). Two scatter plots showing the performance of CVC4
versus general and the domain-specific solvers on these 7 domains can be found
in Figure 4. It is evident from the graphs that the domain-specific solvers reduce
the number of negative points (in the upper left triangle) thereby improving the
performance when compared to CVC4 overall.

Domain specificity: We ran each domain-specific solver (obtained from the
first training set) on all the other domains and the results are summarized in
Table 3. The best performing result for each domain is marked as bold and the
results that are worse than CVC4 are underlined. 5 out of 7 of the domains

14 J. P. Inala et al.

mcm asp brummayerbiere2 brummayerbiere3 float bruttomesso log-slicing

0 100 101 102 103

CVC4

0

100

101

102

103

g
e
n
e
ra

l

0 100 101 102 103

CVC4

0

100

101

102

103

d
o
m

a
in

 s
p
e
ci

fi
c

Fig. 4: Scatter plots showing run-times (log scale) for different solvers on the 7
domains

are very domain-specific; the solvers that are tuned specially for them perform
significantly better than all the other solvers. In some cases, using one solver on
another domain makes it worse than CVC4. However, mcm domain has a solver
optimal for other two domains performing almost identical to their respective
solvers.

Table 3: Cross-domain performance
solver → asp brummayerbiere2 brummayerbiere3 bruttomesso float log-slicing mcm
domain ↓ solved time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved time (s)
asp 288 34971.5 227 28173.5 253 34061.6 240 33118.9 236 29491.3 227 28230.5 255 35159.5
brummayerbiere2 28 786.9 29 1691.0 29 2363.0 29 2174.8 29 1804.2 29 1705.3 28 1706.6
brummayerbiere3 22 1206.7 22 1149.3 24 1272.1 23 1169.2 23 1410.1 22 911.3 25 1945.6
bruttomesso 606 37216.1 609 38744.1 623 32809.8 623 32840.1 623 32867.5 607 37164.7 623 32683.5
float 57 1650.8 57 2179.3 60 4853.1 59 3599.5 60 4395.5 57 1832.4 59 4100.9
log-slicing 58 20816.6 59 20125.7 35 12955.7 35 14640.7 32 11796.1 62 21115.4 36 14021.6
mcm 38 4301.6 40 3413.1 39 3411.2 41 3940.7 39 3759.5 39 5313.0 43 4193.0

7 Related Work

A recent paper [12] on automatically generating propagation complete encodings is
the closest to this work. Encodings generated through OptCNF are propagation
complete and OptCNF also minimizes the number of clauses across the template
being used for the encoder similar to [12]. But, OptCNF is different in two
important ways: (1) Instead of encodings, OptCNF generates encoders which
produce encodings at run-time (enabled by program synthesis) (2) The generated
encoders are specialized for a particular domain (enabled by pattern finding and
auto-tuning).

Synthesis of CNF Encoders for Bit-Vector Solvers 15

Different notions of propagation strength of encodings have been considered
in both Knowledge Compilation [18] (e.g. unit-refutation completeness [20] and
its generalizations [27,28,29]) and Constraint Programming [5,13] communities.
Propagation complete encodings (PCEs) have been established [10] to be “well-
posed” for a SAT solver’s deduction mechanism, which provides a tractable
reasoning on the constraints. [10] reduces the problem of generating PCEs to
iteratively solving QBF formulas whereas OptCNF relies on CEGIS based
program synthesis [45] to generate encoders producing PCEs at run-time. There
has also been some recent work on using SAT solvers for enumeration of prime
implicants in the Knowledge Compilation community [27,28]. In Constraint
Programming, Generalized Arc-Consistency (GAC) [5] is connected to propagation
completeness and has been adopted in SAT [24] but is usually only enforced on
input/output variables and not on auxiliary variables which provides a weaker
notion of propagation strength as compared to PCEs. [9] shows that certain
global constraints can require exponential sized formulas for PCEs. In our work,
we do not encounter this issue since we consider only small patterns as constraints.

Reducing the size of the CNF encodings derived from SAT formulas has been
shown to be an effective way of optimizing SAT solvers [23,15,30,22,40,51]. There
has been a lot of work on optimal encodings for specific kinds of constraints like
cardinality constraints [1], sequence constraints [13], verification of microproces-
sors [51]. There is also some work on logic minimization techniques like Beaver [37].
But, to our knowledge, we are the first ones to generate domain specific encodings
that are propagation complete and minimal for multiple challenging domains
using program synthesis technology.

OptCNF can be extended to other SMT solvers besides CVC4 such as Z3 [19],
Beaver [37], Boolector [14] and Yices [21]. In Beaver and Boolector, intermediate
data structures like And-Inverter graphs (AIGs) are employed and are later on
transformed to CNF efficiently. Consequently, they have numerous optimizations
on the AIG representation before translating it to CNF. Applying OptCNF
directly to such solvers can override these optimizations and hence, requires
more work. These solvers can also use lazy bit-blasting strategy as opposed to
eager bit-blasting that we use in our experiments. OptCNF can be extended to
solvers employing lazy bit-blasting by using the generated encodings at the time
of bit-blasting.

Finally, algorithm configuration [34,4,33], an active area of research in artificial
intelligence, has been used in generation of encodings for Planning Domain
Models [50] and improving CSP solving by searching for optimal solver choices
and the different encodings for the CSP constraints [31]. It has also been shown
to be successful for tuning parameters for SAT solvers [36]. Unlike OpenTuner [3],
where the optimization function is a black-box, algorithm configuration can use
the structure of certain types of functions and employ additional heuristics [35,36]
to optimize them.

16 J. P. Inala et al.

8 Conclusion

In this paper, we presented a technique to generate propagation complete CNF
encoders for bit-vector terms. We combined it with machine learning based
techniques namely pattern finding and auto-tuning to generate domain-specific
solvers. Our evaluation showed that this technique can significantly improve
CVC4, a state of the art SMT solver, on the domains represented in the bit-vector
benchmark suite from SMT-COMP 2015.

Acknowledgments: This research was partially supported by NSF award
#1139056 (ExCAPE) and by DARPA MUSE award #FA8750-14-2-0270.

References

1. I. Abío, R. Nieuwenhuis, A. Oliveras, and E. Rodríguez-Carbonell. Principles and
Practice of Constraint Programming: 19th International Conference, CP 2013, Upp-
sala, Sweden, September 16-20, 2013. Proceedings, chapter A Parametric Approach
for Smaller and Better Encodings of Cardinality Constraints, pages 80–96. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013.

2. R. Alur, R. Bodik, G. Juniwal, M. M. Martin, M. Raghothaman, S. A. Seshia,
R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis.
Dependable Software Systems Engineering, 40:1–25, 2015.

3. J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U. O’Reilly,
and S. P. Amarasinghe. Opentuner: an extensible framework for program autotuning.
In J. N. Amaral and J. Torrellas, editors, International Conference on Parallel
Architectures and Compilation, PACT ’14, Edmonton, AB, Canada, August 24-27,
2014, pages 303–316. ACM, 2014.

4. C. Ansótegui, M. Sellmann, and K. Tierney. A gender-based genetic algorithm for
the automatic configuration of algorithms. In I. P. Gent, editor, Principles and
Practice of Constraint Programming - CP 2009, 15th International Conference, CP
2009, Lisbon, Portugal, September 20-24, 2009, Proceedings, volume 5732 of Lecture
Notes in Computer Science, pages 142–157. Springer, 2009.

5. F. Bacchus. Gac via unit propagation. In Proceedings of the 13th International
Conference on Principles and Practice of Constraint Programming, CP’07, pages
133–147, Berlin, Heidelberg, 2007. Springer-Verlag.

6. C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,
A. Reynolds, and C. Tinelli. Cvc4. In Proceedings of the 23rd International Confer-
ence on Computer Aided Verification, CAV’11, pages 171–177, Berlin, Heidelberg,
2011. Springer-Verlag.

7. C. Barrett, M. Deters, L. Moura, A. Oliveras, and A. Stump. 6 years of smt-comp.
Journal of Automated Reasoning, 50(3):243–277, 2012.

8. C. W. Barrett, L. de Moura, and A. Stump. Smt-comp: Satisfiability modulo
theories competition. In Computer Aided Verification, 17th International Conference,
CAV 2005, Edinburgh, Scotland, UK, July 6-10, 2005, Proceedings, volume 3576
of Lecture Notes in Computer Science, pages 20–23. Springer, 2005. http://
smtcomp.sourceforge.net/2016/.

http://smtcomp.sourceforge.net/2016/
http://smtcomp.sourceforge.net/2016/

Synthesis of CNF Encoders for Bit-Vector Solvers 17

9. C. Bessiere, G. Katsirelos, N. Narodytska, and T. Walsh. Circuit complexity
and decompositions of global constraints. In C. Boutilier, editor, IJCAI 2009,
Proceedings of the 21st International Joint Conference on Artificial Intelligence,
Pasadena, California, USA, July 11-17, 2009, pages 412–418, 2009.

10. L. Bordeaux and J. Marques-Silva. Knowledge compilation with empowerment.
In Proceedings of the 38th International Conference on Current Trends in Theory
and Practice of Computer Science, SOFSEM’12, pages 612–624, Berlin, Heidelberg,
2012. Springer-Verlag.

11. E. Bounimova, P. Godefroid, and D. Molnar. Billions and billions of constraints:
Whitebox fuzz testing in production. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13, pages 122–131, Piscataway, NJ,
USA, 2013. IEEE Press.

12. M. Brain, L. Hadarean, D. Kroening, and R. Martins. Automatic generation of
propagation complete sat encodings. In Verification, Model Checking, and Abstract
Interpretation, pages 536–556. Springer, 2016.

13. S. Brand, N. Narodytska, C. Quimper, P. J. Stuckey, and T. Walsh. Encodings of the
sequence constraint. In C. Bessiere, editor, Principles and Practice of Constraint
Programming - CP 2007, 13th International Conference, CP 2007, Providence,
RI, USA, September 23-27, 2007, Proceedings, volume 4741 of Lecture Notes in
Computer Science, pages 210–224. Springer, 2007.

14. R. Brummayer and A. Biere. Boolector: An efficient smt solver for bit-vectors and
arrays. In Proceedings of the 15th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems: Held As Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2009,, TACAS ’09, pages
174–177, Berlin, Heidelberg, 2009. Springer-Verlag.

15. B. Chambers, P. Manolios, and D. Vroon. Faster sat solving with better cnf
generation. In Proceedings of the Conference on Design, Automation and Test
in Europe, DATE ’09, pages 1590–1595, 3001 Leuven, Belgium, Belgium, 2009.
European Design and Automation Association.

16. A. Cheung, A. Solar-Lezama, and S. Madden. Partial replay of long-running
applications. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering, ESEC/FSE ’11, pages
135–145, New York, NY, USA, 2011. ACM.

17. B. Cook, D. Kroening, P. Rümmer, and C. M. Wintersteiger. Ranking function
synthesis for bit-vector relations. In Proceedings of the 16th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, TACAS’10,
pages 236–250, Berlin, Heidelberg, 2010. Springer-Verlag.

18. A. Darwiche and P. Marquis. A knowledge compilation map. J. Artif. Intell. Res.
(JAIR), 17:229–264, 2002.

19. L. De Moura and N. Bjørner. Z3: an efficient smt solver. In Proceedings of the Theory
and practice of software, 14th international conference on Tools and algorithms for
the construction and analysis of systems, TACAS’08/ETAPS’08, pages 337–340,
Berlin, Heidelberg, 2008. Springer-Verlag.

20. A. del Val. Tractable databases: How to make propositional unit resolution complete
through compilation. In J. Doyle, E. Sandewall, and P. Torasso, editors, Proceedings
of the 4th International Conference on Principles of Knowledge Representation and
Reasoning (KR’94). Bonn, Germany, May 24-27, 1994., pages 551–561. Morgan
Kaufmann, 1994.

21. B. Dutertre. Yices 2.2. In Computer Aided Verification, pages 737–744. Springer,
2014.

18 J. P. Inala et al.

22. N. Eén and A. Biere. Effective preprocessing in sat through variable and clause
elimination. In Proceedings of the 8th International Conference on Theory and
Applications of Satisfiability Testing, SAT’05, pages 61–75, Berlin, Heidelberg, 2005.
Springer-Verlag.

23. N. Een, A. Mishchenko, and N. Sörensson. Applying logic synthesis for speeding up
sat. In Proceedings of the 10th International Conference on Theory and Applications
of Satisfiability Testing, SAT’07, pages 272–286, Berlin, Heidelberg, 2007. Springer-
Verlag.

24. I. P. Gent. Arc consistency in SAT. In F. van Harmelen, editor, Proceedings of the
15th European Conference on Artificial Intelligence, ECAI’2002, Lyon, France, July
2002, pages 121–125. IOS Press, 2002.

25. P. Godefroid. Test generation using symbolic execution. In D. D’Souza, T. Kavitha,
and J. Radhakrishnan, editors, IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS 2012, December
15-17, 2012, Hyderabad, India, volume 18 of LIPIcs, pages 24–33. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2012.

26. S. Gulwani, S. Srivastava, and R. Venkatesan. Constraint-based invariant inference
over predicate abstraction. In Proceedings of the 10th International Conference
on Verification, Model Checking, and Abstract Interpretation, VMCAI ’09, pages
120–135, Berlin, Heidelberg, 2009. Springer-Verlag.

27. M. Gwynne and O. Kullmann. Generalising and unifying SLUR and unit-refutation
completeness. In P. van Emde Boas, F. C. A. Groen, G. F. Italiano, J. R. Nawrocki,
and H. Sack, editors, SOFSEM 2013: Theory and Practice of Computer Science, 39th
International Conference on Current Trends in Theory and Practice of Computer
Science, Špindlerův Mlýn, Czech Republic, January 26-31, 2013. Proceedings, volume
7741 of Lecture Notes in Computer Science, pages 220–232. Springer, 2013.

28. M. Gwynne and O. Kullmann. Towards a theory of good SAT representations.
CoRR, abs/1302.4421, 2013.

29. M. Gwynne and O. Kullmann. Generalising unit-refutation completeness and SLUR
via nested input resolution. J. Autom. Reasoning, 52(1):31–65, 2014.

30. M. Heule, M. Järvisalo, and A. Biere. Clause elimination procedures for CNF
formulas. In C. G. Fermüller and A. Voronkov, editors, Logic for Programming,
Artificial Intelligence, and Reasoning - 17th International Conference, LPAR-17,
Yogyakarta, Indonesia, October 10-15, 2010. Proceedings, volume 6397 of Lecture
Notes in Computer Science, pages 357–371. Springer, 2010.

31. B. Hurley, L. Kotthoff, Y. Malitsky, and B. O’Sullivan. Proteus: A hierarchical
portfolio of solvers and transformations. In H. Simonis, editor, Integration of AI
and OR Techniques in Constraint Programming - 11th International Conference,
CPAIOR 2014, Cork, Ireland, May 19-23, 2014. Proceedings, volume 8451 of Lecture
Notes in Computer Science, pages 301–317. Springer, 2014.

32. F. Hutter, D. Babic, H. H. Hoos, and A. J. Hu. Boosting verification by auto-
matic tuning of decision procedures. In Proceedings of the Formal Methods in
Computer Aided Design, FMCAD ’07, pages 27–34, Washington, DC, USA, 2007.
IEEE Computer Society.

33. F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In C. A. C. Coello, editor, Learning and Intel-
ligent Optimization - 5th International Conference, LION 5, Rome, Italy, January
17-21, 2011. Selected Papers, volume 6683 of Lecture Notes in Computer Science,
pages 507–523. Springer, 2011.

34. F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle. Paramils: An automatic
algorithm configuration framework. J. Artif. Int. Res., 36(1):267–306, Sept. 2009.

Synthesis of CNF Encoders for Bit-Vector Solvers 19

35. F. Hutter, H. H. Hoos, and T. Stützle. Automatic algorithm configuration based on
local search. In Proceedings of the Twenty-Second AAAI Conference on Artificial
Intelligence, July 22-26, 2007, Vancouver, British Columbia, Canada, pages 1152–
1157. AAAI Press, 2007.

36. F. Hutter, M. T. Lindauer, A. Balint, S. Bayless, H. H. Hoos, and K. Leyton-Brown.
The configurable SAT solver challenge (CSSC). CoRR, abs/1505.01221, 2015.

37. S. Jha, R. Limaye, and S. A. Seshia. Beaver: Engineering an efficient smt solver
for bit-vector arithmetic. In Proceedings of the 21st International Conference on
Computer Aided Verification, CAV ’09, pages 668–674, Berlin, Heidelberg, 2009.
Springer-Verlag.

38. N. Manthey, M. Heule, and A. Biere. Automated reencoding of boolean formulas. In
A. Biere, A. Nahir, and T. E. J. Vos, editors, Hardware and Software: Verification
and Testing - 8th International Haifa Verification Conference, HVC 2012, Haifa,
Israel, November 6-8, 2012. Revised Selected Papers, volume 7857 of Lecture Notes
in Computer Science, pages 102–117. Springer, 2012.

39. R. Martins, V. M. Manquinho, and I. Lynce. Exploiting cardinality encodings in
parallel maximum satisfiability. In IEEE 23rd International Conference on Tools
with Artificial Intelligence, ICTAI 2011, Boca Raton, FL, USA, November 7-9, 2011,
pages 313–320. IEEE Computer Society, 2011.

40. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an efficient sat solver. In Proceedings of the 38th Annual Design
Automation Conference, DAC ’01, pages 530–535, New York, NY, USA, 2001. ACM.

41. C. Nguyen, H. Yoshida,M. R. Prasad, I. Ghosh, and K. Sen. Generating Succinct Test
Cases Using Don’t Care Analysis. In Proceedings of the Eighth IEEE International
Conference on Software Testing, Verification and Validation, pages 1–10. IEEE,
2015.

42. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proceedings
of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’89, pages 179–190, New York, NY, USA, 1989. ACM.

43. K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs. Jalangi: A selective record-replay
and dynamic analysis framework for javascript. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2013, pages 488–498,
New York, NY, USA, 2013. ACM.

44. R. Singh and A. Solar-Lezama. Automatic generation of formula simplifiers based
on conditional rewrite rules,arxiv:1602.07285, 2016.

45. A. Solar-Lezama. Program Synthesis By Sketching. PhD thesis, EECS Dept., UC
Berkeley, 2008.

46. S. Srivastava, S. Gulwani, and J. S. Foster. From program verification to program
synthesis. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’10, pages 313–326, New York,
NY, USA, 2010. ACM.

47. A. Stump, G. Sutcliffe, and C. Tinelli. Introducing starexec: a cross-community
infrastructure for logic solving. In V. Klebanov, B. Beckert, A. Biere, and G. Sutcliffe,
editors, COMPARE, volume 873 of CEUR Workshop Proceedings, page 2. CEUR-
WS.org, 2012.

48. H. Tanno, X. Zhang, T. Hoshino, and K. Sen. Tesma and catg: Automated test
generation tools for models of enterprise applications. In Proceedings of the 37th
International Conference on Software Engineering - Volume 2, ICSE ’15, pages
717–720, Piscataway, NJ, USA, 2015. IEEE Press.

49. G. S. Tseitin. On the complexity of derivation in propositional calculus. In
Automation of reasoning, pages 466–483. Springer, 1983.

20 J. P. Inala et al.

50. M. Vallati, F. Hutter, L. Chrpa, and T. L. McCluskey. On the effective configuration
of planning domain models. In Q. Yang and M. Wooldridge, editors, Proceedings of
the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI
2015, Buenos Aires, Argentina, July 25-31, 2015, pages 1704–1711. AAAI Press,
2015.

51. M. N. Velev. Efficient translation of boolean formulas to cnf in formal verification
of microprocessors. In Proceedings of the 2004 Asia and South Pacific Design
Automation Conference, ASP-DAC ’04, pages 310–315, Piscataway, NJ, USA, 2004.
IEEE Press.

52. X. Wang, N. Zeldovich, M. F. Kaashoek, and A. Solar-Lezama. A differential
approach to undefined behavior detection. Commun. ACM, 59(3):99–106, 2016.

Synthesis of CNF Encoders for Bit-Vector Solvers 21

9 Appendix

Table 4 shows the performance comparison between domain specific solvers that
is auto-tuned on the second training set and CVC4. These are evaluated on the
corresponding second test sets and hence, are not directly comparable to Table 2.

Table 4: Performance comparison: Domain-specific, general and CVC4 solvers on
7 categories of QF_BV benchmark suite (second training set)

CVC4 general Domain-Specific Boolector
Benchmark category solved time (s) solved time (s) solved time (s) solved time (s)
asp (365) 237 36330.9 228 33828.7 273 37212.5 300 31661.7
brummayerbiere2 (32) 26 1030.6 21 1885.6 29 3390.7 31 999.5
brummayerbiere3 (39) 17 1653.4 16 2333.7 18 2465.4 27 668.4
bruttomesso (676) 621 30642.0 610 35967.9 620 31492.5 774 7832.0
float (62) 53 3829.2 53 7670.0 54 4086.5 49 6462.2
log-slicing (79) 29 9340.1 57 17955.2 58 17465.5 60 11098.1
mcm (61) 39 3159.6 39 6382.2 43 4274.5 40 9379.3

1022 85985.8 1024 106023.3 1095 100387.6 1281 68101.2

Table 5 shows the performance comparison of CVC4 with general solver on
domains we didn’t run auto-tuning on. Here, we eliminate rows where the perfor-
mance of both the solvers were similar.

Table 5: Performance comparison between general optimal solver and CVC4 on
the other domains of QF_BV benchmarks

CVC4 general Boolector
Benchmark category solved time (s) solved time (s) solved time (s)
VS3 (10) 2 742.2 0 0.0 3 434.9
uclid (416) 416 1625.3 416 1981.6 416 450.9
tacas07 (5) 5 1257.0 5 831.1 5 251.3
stp_samples (426) 424 72.4 424 182.3 426 9.9
spear (15) 12 251.8 12 786.1 12 128.0
sage (22390) 22390 6225.7 22390 7683.3 22390 3690.3
brummayerbiere (52) 39 2611.4 39 1714.7 41 448.4
bmc-bv (135) 135 520.2 135 473.9 135 51.9
fft (16) 8 886.2 7 41.0 9 597.1
calypto (16) 9 2.99 11 985.1 15 1447.8

23440 14195.2 23339 14679.1 23452 7510.5

22 J. P. Inala et al.

0 100 101 102 103

CVC4

0

100

101

102

a
sp

0 100 101 102

CVC4

0

100

101

102

103

b
ru

m
m

a
y
e
rb

ie
re

2

0 100 101 102

CVC4

0

100

101

102

b
ru

m
m

a
y
e
rb

ie
re

3

0 100 101 102 103

CVC4

0

100

101

102

103

b
ru

tt
o
m

e
ss

o

0 100 101 102 103

CVC4

0

100

101

102

fl
o
a
t

0 100 101 102 103

CVC4

0

100

101

102

lo
g
-s

lic
in

g

0 100 101 102

CVC4

0

100

101

102

m
cm

Fig. 5: Scatter plots for performance comparison between domain specific solvers
and CVC4 for each domain

	Synthesis of Domain Specific CNF Encoders for Bit-Vector Solvers

