Task-Based Design of Ad-hoc Modular Manipulators

Thais Campos^{1,*}, Jeevana Priya Inala^{2,*}, Armando Solar-Lezama² and Hadas Kress-Gazit¹

¹Cornell University, ²Massachusetts Institute of Technology *Equal contribution

INTRODUCTION

- **Problem**: find **a design and controller** that reach all **task points** in a single **trajectory**. lacksquare
- Our approach can also handle **partially infeasible tasks**.

- Finding a **configuration** to perform a **specific task** can be **challenging** due to the **large design space**.
- In our approach, we **automatically synthesize** task specific configuration and controls for modular manipulators.

The search space consists of one DoF actuators (Hebi Robotics X-Series depicted), mounting brackets and link lengths; The task input is a set of points in 3D space as well as spherical obstacles in the environment. Our approach automatically synthesizes provably-correct design and controls to reach the task points.

Our approach is composed of **two parts**: \bullet

RESULTS

-~~)

Comparison with Genetic Algorithm (GA)

		GA		Sketch	
Task	DoFs	% Success	Runtime (s)	% Success	Runtime (s)
9	2	60	125.1 <u>+</u> 6.4	100	9.9 <u>+</u> 5.3
points	3	100	311.9 <u>+</u> 115.7	100	6.1 <u>+</u> 5.2
	4	100	211.5 <u>+</u> 5.1	100	32.7 <u>+</u> 13.7

Table 1. Rate of success for a feasible task in an environment without obstacles for GA and Sketch

Obstacle Radius (m)	GA solved?	Runtime	Sketch solved?	Runtime
0.2	Yes	2.3s	Yes	3.1s
0.4	Yes	48.47m	Yes	2.8s
0.6	No	-	Yes	9.4s
0.8	No	-	Yes	13.6s
1.0	No	-	Yes	10.6s

2. Partially Infeasible task

Designs found for problem with 1 obstacle and 6 task points. (A) First configuration reaching 4 of the 6 task points. (B) Second configuration reaching the other 2 task points.

CONCLUSIONS

- framework synthesizes Our task-based provably-correct designs for **manipulators**.
- It can handle **partially infeasible** tasks.
- It can generate more than one configuration if a single one cannot accomplish the full task.
- GA outperforms in lt constrained environments.
- Limitations: our approach is not complete and it might require user input.

In the future, we will encode more complex tasks (e.g. follow additional trajectory) and physical constraints (e.g. torque limit).

